نتایج جستجو برای: double strand break dna

تعداد نتایج: 763864  

Journal: :Journal of Biological Chemistry 1997

Journal: :The EMBO journal 2013
Soo-Hyun Yang Ruobo Zhou Judith Campbell Junjie Chen Taekjip Ha Tanya T Paull

The human SSB homologue 1 (hSSB1) has been shown to facilitate homologous recombination and double-strand break signalling in human cells. Here, we compare the DNA-binding properties of the SOSS1 complex, containing SSB1, with Replication Protein A (RPA), the primary single-strand DNA (ssDNA) binding complex in eukaryotes. Ensemble and single-molecule approaches show that SOSS1 binds ssDNA with...

2012
Audun Hanssen-Bauer Karin Solvang-Garten Mansour Akbari Marit Otterlei

X-ray Repair Cross Complementing protein 1 (XRCC1) acts as a scaffolding protein in the converging base excision repair (BER) and single strand break repair (SSBR) pathways. XRCC1 also interacts with itself and rapidly accumulates at sites of DNA damage. XRCC1 can thus mediate the assembly of large multiprotein DNA repair complexes as well as facilitate the recruitment of DNA repair proteins to...

Journal: :Cold Spring Harbor perspectives in biology 2012
Mark O'Driscoll

Within the last decade, multiple novel congenital human disorders have been described with genetic defects in known and/or novel components of several well-known DNA repair and damage response pathways. Examples include disorders of impaired nucleotide excision repair, DNA double-strand and single-strand break repair, as well as compromised DNA damage-induced signal transduction including phosp...

Journal: :Genetics 2017
Julie Korda Holsclaw Jeff Sekelsky

DNA double-strand breaks (DSBs) pose a serious threat to genomic integrity. If unrepaired, they can lead to chromosome fragmentation and cell death. If repaired incorrectly, they can cause mutations and chromosome rearrangements. DSBs are repaired using end-joining or homology-directed repair strategies, with the predominant form of homology-directed repair being synthesis-dependent strand anne...

Journal: :Cancer research 2005
Harm H Kampinga Andrei Laszlo

In their recent article, Takahashi et al. (1) suggest that heatinduced DNA double strand breaks contribute to heat-induced cell killing because heat treatment induces histone gH2AX-containing foci. Such foci have been associated with double strand breaks induced by ionizing radiation, other agents, and other stresses (2). However, the authors disregard the hyperthermia biology literature, which...

Journal: :Molecular cell 1998
Q Shan M M Cox

RecA protein will bind to a gapped duplex DNA molecule and promote a DNA strand exchange with a second homologous linear duplex. A double-strand break in the second duplex is efficiently bypassed in the course of these reactions. We demonstrate that the bypass of double-strand breaks is not explained by a mechanism involving homologous interactions between two duplex DNA molecules, but instead ...

2013
Amelie Croset Fabrice P. Cordelières Nathalie Berthault Cyril Buhler Jian-Sheng Sun Maria Quanz Marie Dutreix

One of the major early steps of repair is the recruitment of repair proteins at the damage site, and this is coordinated by a cascade of modifications controlled by phosphatidylinositol 3-kinase-related kinases and/or poly (ADP-ribose) polymerase (PARP). We used short interfering DNA molecules mimicking double-strand breaks (called Dbait) or single-strand breaks (called Pbait) to promote DNA-de...

Journal: :Genetics 2006
Benjamin Pardo Emilie Ma Stéphane Marcand

In yeast, the nonhomologous end joining pathway (NHEJ) mobilizes the DNA polymerase Pol4 to repair DNA double-strand breaks when gap filling is required prior to ligation. Using telomere-telomere fusions caused by loss of the telomeric protein Rap1 and double-strand break repair on transformed DNA as assays for NHEJ between fully uncohesive ends, we show that Pol4 is able to extend a 3'-end who...

Journal: :Genetics 2003
Jason D Merker Margaret Dominska Thomas D Petes

The double-strand break repair (DSBR) model of recombination predicts that heteroduplexes will be formed in regions that flank the double-strand break (DSB) site and that the resulting intermediate is resolved to generate either crossovers or noncrossovers for flanking markers. Previous studies in Saccharomyces cerevisiae, however, failed to detect heteroduplexes on both sides of the DSB site. ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید