نتایج جستجو برای: degree of a vertex
تعداد نتایج: 23282068 فیلتر نتایج به سال:
The variable sum exdeg index of a graph G is defined as $SEI_a(G)=sum_{uin V(G)}d_G(u)a^{d_G(u)}$, where $aneq 1$ is a positive real number, du(u) is the degree of a vertex u ∈ V (G). In this paper, we characterize the graphs with the extremum variable sum exdeg index among all the graphs having a fixed number of vertices and cut edges, for every a>1.
The Narumi-Katayama index was the first topological index defined by the product of some graph theoretical quantities. Let $G$ be a simple graph with vertex set $V = {v_1,ldots, v_n }$ and $d(v)$ be the degree of vertex $v$ in the graph $G$. The Narumi-Katayama index is defined as $NK(G) = prod_{vin V}d(v)$. In this paper, the Narumi-Katayama index is generalized using a $n$-ve...
We give results for the age dependent distribution of vertex degree and number of vertices of given degree in the undirected web-graph process, a discrete random graph process introduced in [8]. For such processes we show that as k → ∞, the expected proportion of vertices of degree k has power law parameter 1+1/η where η is the limiting ratio of the expected number of edge endpoints inserted by...
The general sum-connectivity index of a graph $G$ is defined as $chi_{alpha}(G)= sum_{uvin E(G)} (d_u + d_{v})^{alpha}$ where $d_{u}$ is degree of the vertex $uin V(G)$, $alpha$ is a real number different from $0$ and $uv$ is the edge connecting the vertices $u,v$. In this note, the problem of characterizing the graphs having extremum $chi_{alpha}$ values from a certain collection of polyomino ...
Let $G$ be a finite group and $pi_{e}(G)$ be the set of orders of all elements in $G$. The set $pi_{e}(G)$ determines the prime graph (or Grunberg-Kegel graph) $Gamma(G)$ whose vertex set is $pi(G)$, the set of primes dividing the order of $G$, and two vertices $p$ and $q$ are adjacent if and only if $pqinpi_{e}(G)$. The degree $deg(p)$ of a vertex $pin pi(G)$, is the number of edges incident...
for a graph $g$ with edge set $e(g)$, the multiplicative sum zagreb index of $g$ is defined as$pi^*(g)=pi_{uvin e(g)}[d_g(u)+d_g(v)]$, where $d_g(v)$ is the degree of vertex $v$ in $g$.in this paper, we first introduce some graph transformations that decreasethis index. in application, we identify the fourteen class of trees, with the first through fourteenth smallest multiplicative sum zagreb ...
for a graph $g$ with edge set $e(g)$, the multiplicative second zagreb index of $g$ is defined as $pi_2(g)=pi_{uvin e(g)}[d_g(u)d_g(v)]$, where $d_g(v)$ is the degree of vertex $v$ in $g$. in this paper, we identify the eighth class of trees, with the first through eighth smallest multiplicative second zagreb indeces among all trees of order $ngeq 14$.
the inflation $g_{i}$ of a graph $g$ with $n(g)$ vertices and $m(g)$ edges is obtained from $g$ by replacing every vertex of degree $d$ of $g$ by a clique, which is isomorph to the complete graph $k_{d}$, and each edge $(x_{i},x_{j})$ of $g$ is replaced by an edge $(u,v)$ in such a way that $uin x_{i}$, $vin x_{j}$, and two different edges of $g$ are replaced by non-adjacent edges of $g_{i}$. t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید