نتایج جستجو برای: dedekind groups

تعداد نتایج: 729925  

2009
PITH XIE

Simple continued fractions, base-b expansions, Dedekind cuts and Cauchy sequences are common notations for number systems. In this note, first, it is proven that both simple continued fractions and base-b expansions fail to denote real numbers and thus lack logic; second, it is shown that Dedekind cuts and Cauchy sequences fail to join in algebraical operations and thus lack intuition; third, w...

Journal: :Electr. Notes Theor. Comput. Sci. 2002
Klaus Grue

Many operations exist for constructing Scott-domains. This paper presents Dedekind completion as a new operation for constructing such domains and outlines an application of the operation. Dedekind complete Scott domains are of particular interest when modeling versions of λ-calculus that allow quantification over sets of arbitrary cardinality. Hence, it is of interest when constructing models ...

2005
J. H. PARK

We study the asymptotics of the heat trace Tr{fPe 2 } where P is an operator of Dirac type, where f is an auxiliary smooth smearing function which is used to localize the problem, and where we impose spectral boundary conditions. Using functorial techniques and special case calculations, the boundary part of the leading coefficients in the asymptotic expansion is found.

Journal: :Discrete & Computational Geometry 2002
Matthias Beck Sinai Robins

We give explicit, polynomial–time computable formulas for the number of integer points in any two– dimensional rational polygon. A rational polygon is one whose vertices have rational coordinates. We find that the basic building blocks of our formulas are Dedekind–Rademacher sums, which are polynomial–time computable finite Fourier series. As a by–product we rederive a reciprocity law for these...

2010
WENLIANG ZHANG

Motivation: Our textbook discusses and even proves many properties of R, the field of real numbers; but it doesn’t define it. I felt that it would be rather awkward to discuss real numbers without knowing what they were and I decided to write some notes on the construction of R. The approach I am following is called ‘Dedekind cut’, discovered by a German mathematician, Richard Dedekind (1831-19...

2005
Stéphane R. Louboutin

— We give an explicit upper bound for the residue at s = 1 of the Dedekind zeta function of a totally real number field K for which ζK(s)/ζ(s) is entire. Notice that this is conjecturally always the case, and that it holds true if K/Q is normal or if K is cubic. Résumé (Bornes supérieures explicites pour les résidus en s = 1 des fonctions zêta de Dedekind de corps de nombres totalement réels) N...

2001
Matthias Beck Sinai Robins

We give explicit, polynomial–time computable formulas for the number of integer points in any two– dimensional rational polygon. A rational polygon is one whose vertices have rational coordinates. We find that the basic building blocks of our formulas are Dedekind–Rademacher sums, which are polynomial–time computable finite Fourier series. As a by–product we rederive a reciprocity law for these...

‎In this paper‎, ‎we introduce a new sum‎ ‎analogous to Gauss sum‎, ‎then we use the properties of the‎ ‎classical Gauss sums and analytic method to study the hybrid mean‎ ‎value problem involving this new sums and Dedekind sums‎, ‎and‎ ‎give an interesting identity for it.

Journal: :Journal of the Mathematical Society of Japan 1959

Journal: :Journal of Pure and Applied Algebra 1985

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید