نتایج جستجو برای: convex metric space
تعداد نتایج: 604474 فیلتر نتایج به سال:
Huang and Zhang cite{Huang} have introduced the concept of cone metric space where the set of real numbers is replaced by an ordered Banach space. Shojaei cite{shojaei} has obtained points of coincidence and common fixed points for s-Contraction mappings which satisfy generalized contractive type conditions in a complete cone metric space.In this paper, the notion of complete cone metric ...
Let T be a precompact subset of a Hilbert space. The metric entropy of the convex hull of T is estimated in terms of the metric entropy of T , when the latter is of order α = 2. The estimate is best possible. Thus, it answers a question left open in [LL] and [CKP]. 0.
We show that in a Banach space X every closed convex subset is strongly proximinal if and only if the dual norm is strongly sub differentiable and for each norm one functional f in the dual space X∗, JX(f) the set of norm one elements in X where f attains its norm is compact. As a consequence, it is observed that if the dual norm is strongly sub differentiable then every closed convex subset of...
we introduce variational inequality problems on hilbert $c^*$-modules and we prove several existence results for variational inequalities defined on closed convex sets. then relation between variational inequalities, $c^*$-valued metric projection and fixed point theory on hilbert $c^*$-modules is studied.
The complexity (quasi-metric) space was introduced in [23] to study complexity analysis of programs. Recently, it was introduced in [22] the dual complexity (quasi-metric) space, as a subspace of the function space [0,+∞)ω. Several quasi-metric properties of the complexity space were obtained via the analysis of its dual. We here show that the structure of a quasi-normed semilinear space provid...
Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...
Abstract. The space which consists of measures having finite second moment is an infinite dimensional metric space endowed with Wasserstein distance, while the space of Gaussian measures on Euclidean space is parameterized by mean and covariance matrices, hence a finite dimensional manifold. By restricting to the space of Gaussian measures inside the space of probability measures, we manage to ...
In [6], the second author proved general metatheorems for the extraction of effective uniform bounds from ineffective existence proofs in functional analysis, more precisely from proofs in classical analysis A(:= weakly extensional Peano arithmetic WE-PA in all finite types + quantitifer-free choice + the axiom schema of dependent choice DC) extended with (variants of) abstract bounded metric s...
In this paper we study the problem of extending means to means of higher order. We show how higher order means can be inductively defined and established in general metric spaces, in particular, in convex metric spaces. As a particular application, we consider the positive operators on a Hilbert space under the Thompson metric and show that the operator logarithmic mean admits extensions of all...
In this paper, the convergence results of [V. Berinde; A convergence theorem for Mann iteration in the class of Zamfirescu operators, Analele Universitatii de Vest, Timisoara, Seria Matematica-Informatica 45 (1) (2007), 33–41], [V. Berinde; On the convergence of Mann iteration for a class of quasi-contractive operators, Preprint, North University of Baia Mare (2003)] and [V. Berinde; On the Con...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید