نتایج جستجو برای: centre of lie algebra
تعداد نتایج: 21184059 فیلتر نتایج به سال:
this thesis basically deals with the well-known notion of the bear-invariant of groups, which is the generalization of the schur multiplier of groups. in chapter two, section 2.1, we present an explicit formula for the bear-invariant of a direct product of cyclic groups with respect to nc, c>1. also in section 2.2, we caculate the baer-invatiant of a nilpotent product of cyclic groups wuth resp...
It is well known that the Poisson Lie algebra is isomorphic to the Hamiltonian Lie algebra [1],[3],[13]. We show that the Poisson Lie algebra can be embedded properly in the special type Lie algebra [13]. We also generalize the Hamitonian Lie algebra using exponential functions, and we show that these Lie algebras are simple.
using fixed point method, we prove some new stability results for lie $(alpha,beta,gamma)$-derivations and lie $c^{ast}$-algebra homomorphisms on lie $c^{ast}$-algebras associated with the euler-lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...
We present results describing Lie ideals and maximal finite-codimensional Lie subalgebras of the Lie algebras associated with Lie algebroids with non-singular anchor maps. We also prove that every isomorphism of such Lie algebras induces diffeomorphism of base manifolds respecting the generalized foliations defined by the anchor maps.
In order to describe non-Hamiltonian (dissipative) systems in quantum theory we need to use non-Lie algebra such that commutators of this algebra generate Lie subalgebra. It was shown that classical connection between analytic group (Lie group) and Lie algebra, proved by Lie theorems, exists between analytic loop, commutant of which is associative subloop (group), and commutant Lie algebra (an ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید