The Cartesian product of two hamiltonian graphs is always hamiltonian. For directed graphs, the analogous statement is false. We show that the Cartesian product C,,, x C,, of directed cycles is hamiltonian if and only if the greatest common divisor (g.c.d.) d of n, and n, is a t least two and there exist positive integers d,, d, so that d, + d, = d and g.c.d. (n,, d,) = g.c.d. (n,, d,) = 1. We ...