Let G be a locally compact group. We use the canonical operator space structure on the spaces L(G) for p ∈ [1,∞] introduced by G. Pisier to define operator space analoguesOAp(G) of the classical Figà-Talamanca–Herz algebrasAp(G). If p ∈ (1,∞) is arbitrary, then Ap(G) ⊂ OAp(G) such that the inclusion is a contraction; if p = 2, then OA2(G) ∼= A(G) as Banach spaces spaces, but not necessarily as ...