نتایج جستجو برای: biological particle

تعداد نتایج: 631409  

2016
Jianfang Cao Hongyan Cui Hao Shi Lijuan Jiao

A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural netwo...

2005
NICOLAS LANCHIER

In this paper, we introduce a generalization of the two-color multitype contact process intended to mimic a biological process called allelopathy. To be precise, we have two types of particle. Particles of each type give birth to particles of the same type, and die at rate 1. When a particle of type 1 dies, it gives way to a frozen site that blocks particles of type 2 for an exponentially distr...

2009
W. Winiwarter H. Bauer H. Puxbaum

Atmospheric concentration measurements of tracers for primary biological aerosol particles (PBAPs) have been used to obtain estimates of their release into the atmosphere. Emission flux data of surrogate compounds, for which concurrent concentration measurements were available, were used to quantify the release of PBAPs as PM10 mass. Results indicate fungal spores to be the most important contr...

2003
Jasmine Banks Rosalba Rothnagel Ben Hankamer

One of the next great challenges of cell biology is the determination of the enormous number of protein structures encoded in genomes. In recent years, advances in electron cryo-microscopy and high-resolution single particle analysis have developed to the point where they now provide a methodology for high resolution structure determination. Using this approach, images of randomly oriented sing...

2010
Hadi Shafiee John L. Caldwell Rafael V. Davalos

201 Hadi Shafiee, John L. Caldwell, and Rafael V. Davalos* Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA Bioelectromechanical Systems Laboratory, Institute for Critical Technology and Applied Science (ICTAS), Virginia Polytechnic Institute and State University, Blacksburg, VA Bradley Department of Electrical and Computer Eng...

2008
Jie Wu

This article presents recent patents and advances on electrical methods for particle manipulation in a microfluidic environment. At microscale, electric fields have unique advantages in performing analytical functions such as manipulation of biological molecules and cells. The advent of AC electrokinetics in recent years further promotes the development of laboratory on a chip, providing versat...

Journal: :Optics letters 2010
James Inman Scott Forth Michelle D Wang

The recent advent of angular optical trapping techniques has allowed for rotational control and direct torque measurement on biological substrates. Here we present a method that increases the versatility and flexibility of these techniques. We demonstrate that a single beam with a rapidly rotating linear polarization can be utilized to apply a constant controllable torque to a trapped particle ...

Journal: :Optics letters 2009
Hui Fang Lihong V Wang

Recently, there has been growing interest in the development of photoacoustic flow measuring methods aimed to study microvascular blood flow in biological tissue. Here, we describe the M-mode photoacoustic particle flow imaging, using an optical resolution photoacoustic microscope equipped with a high-repetition-rate pulsed dye laser. We studied the flow of a diluted dyed particle suspension in...

2016
Slavica JONIC

Biological macromolecular complexes are of great interest for molecular biology and structure-based drug design as they are involved in core biological functions such as protein synthesis or cellular transport. They undergo large conformational transitions to achieve these functions. Therefore, characterization of structure and conformational flexibility of these macromolecular complexes is cru...

Journal: :Chemical communications 2011
Changmin Yu Ming Luo Fang Zeng Fangyuan Zheng Shuizhu Wu

A mesoporous silica nanoparticle (MSN) based fluorescent sensor for dopamine was constructed with probes inside particle pores and β-cyclodextrin (β-CD) molecules on the particle surface as the selective barricade. The synergistic action of both the hydrophilic rim and hydrophobic cavity of β-CD ensures that the sensor can distinguish dopamine from other biological competitors.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید