نتایج جستجو برای: biharmonic maps
تعداد نتایج: 107934 فیلتر نتایج به سال:
This is a supplement to our previous research note [3]. In [3], we gave a characterization of biharmonic curves in Minkowski 3-space. More precisely, we pointed out that every biharmonic curves with nonnull principal normal in Minkowski 3-space is a helix, whose curvature κ and torsion τ satisfy κ2 = τ2. In the classification of biharmonic curves in Minkowski 3-space due to Chen and Ishikawa [1...
Motion of a biharmonic system under action of small periodic force and small damped force is studied. The biharmonic oscillator is a physical system acting under a biharmonic force like: θ θ 2 sin sin b a + . The article contains biharmonic oscillator analysis, phase space research, and analytic solutions for separatrixes. The biharmonic oscillator performs chaotic motion near separatrixes unde...
For a domain R and a Riemannian manifold N R. If u 2 W ( ; N) is an extrinsic (or intrinsic, respectively) biharmonic map. Then u 2 C( ; N). x
We prove that a stationary extrinsic (or intrinsic, respectively) biharmonic map u 2 W ( ; N) from R into a Riemnanian manifold N is smooth away from a closed set of (m 4)-dimensional Hausdor measure zero. x
In this paper, non-geodesic biharmonic curves in ̃ SL(2, R) space are characterized and the statement that only proper biharmonic curves are helices is proved. Also, the explicit parametric equations of proper biharmonic helices are obtained. AMS subject classifications: 53A40
in this paper, we study spacelike dual biharmonic curves. we characterize spacelike dual biharmonic curves in terms of their curvature and torsion in the lorentzian dual heisenberg group . we give necessary and sufficient conditions for spacelike dual biharmonic curves in the lorentzian dual heisenberg group . therefore, we prove that all spacelike dual biharmonic curves are spacelike dual heli...
We study the eigenvalues of the biharmonic operators and the buckling eigenvalue on complete, open Riemannian manifolds. We show that the first eigenvalue of the biharmonic operator on a complete, parabolic Riemannian manifold is zero. We give a generalization of the buckling eigenvalue and give applications to studying the stability of minimal Lagrangian submanifolds in Kähler manifolds. MSC 1...
Chen's biharmonic conjecture is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider an advanced version of the conjecture, replacing $Delta$ by its extension, $L_1$-operator ($L_1$-conjecture). The $L_1$-conjecture states that any $L_1$-biharmonic Euclidean hypersurface is 1-minimal. We prove that the $L_1$-conje...
and the corresponding Euler-Lagrange equation is H = 0, where H is the mean curvature vector field. If φ : (M, g) → (N, h) is a Riemannian immersion, then it is a critical point of the bienergy in C∞(M,N) if and only if it is a minimal immersion [26]. Thus, in order to study minimal immersions one can look at harmonic Riemannian immersions. A natural generalization of harmonic maps and minimal ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید