نتایج جستجو برای: bi variate garch model
تعداد نتایج: 2145204 فیلتر نتایج به سال:
This contribution presents an isogeometric approach in three dimensions for nonlinear problems solid mechanics and structural dynamics. The proposed aligns with the boundary representation modeling technique CAD. Isogeometric analysis is combined parameterization of scaled finite element method. In this way, description 3D solids CAD can be directly utilized framework. approximation solution on...
Since ARCH and GARCH models are presented, more and more authors are interested in the study of volatilities in financial markets with GARCH models. Method for estimating the coefficients of GARCH models is mainly the maximum likelihood estimation. Now we consider another method—MCMC method to substitute for maximum likelihood estimation method. Then we compare three GARCH models based on it. M...
This paper is mainly talking about several volatility models and its ability to predict and capture the distinctive characteristics of conditional variance about the empirical financial data. In my paper, I choose basic GARCH model and two important models of the GARCH family which are E-GARCH model and GJR-GARCH model to estimate. At the same time, in order to acquire the forecasting performan...
We propose a new method for pricing options based on GARCH models with filtered historical innovations. In an incomplete market framework we allow for different distributions of the historical and the pricing return dynamics enhancing the model flexibility to fit market option prices. An extensive empirical analysis based on S&P 500 index options shows that our model outperforms other competing...
One of the most used methods to forecast price volatility is the generalized autoregressive conditional heteroskedasticity (GARCH) model. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted to improve forecasting models employing a variety of techniques. In this paper, we extend the field of expert systems, forecasting, and mode...
We introduce a new semiparametric model, GARCH with Functional EX ogeneous Liquidity (GARCH-FunXL), to capture the impact of liquidity, as implied by a stock exchange’s complete electronic limit order book (LOB), on asset price volatility. LOB-implied liquidity can be viewed as a functional rather than scalar or vectorial stochastic process. We adopt recent ideas from the functional data analys...
We propose a new method for pricing options based on GARCH models with filtered historical innovations. In an incomplete market framework, we allow for different distributions of historical and pricing return dynamics enhancing the model flexibility to fit market option prices. An extensive empirical analysis based on S&P 500 index options shows that our model outperforms other competing GARCH ...
Economic and financial time series typically exhibit time varying conditional (given the past) standard deviations and correlations. The conditional standard deviation is also called the volatility. Higher volatilities increase the risk of assets, and higher conditional correlations cause an increased risk in portfolios. Therefore, models of time varying volatilities and correlations are essent...
This paper estimates the dynamic conditional correlations in the returns on Tapis oil spot and onemonth forward prices for the period 2 June 1992 to 16 January 2004, using recently developed multivariate conditional volatility models, namely the Constant Conditional Correlation Multivariate GARCH (CCCMGARCH) model of Bollerslev [1990], Vector Autoregressive Moving Average – GARCH (VARMAGARCH) m...
Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید