Given a Banach space X, for n ∈ N and p ∈ (1,∞) we investigate the smallest constant P ∈ (0,∞) for which every f1, . . . , fn : {−1, 1} → X satisfy ∫ {−1,1}n ∥∥∥∥ n ∑ j=1 ∂jfj(ε) ∥∥∥∥ p dμ(ε) 6 P ∫ {−1,1}n ∫ {−1,1}n ∥∥∥∥ n ∑ j=1 δj∆fj(ε) ∥∥∥∥ p dμ(ε)dμ(δ), where μ is the uniform probability measure on the discrete hypercube {−1, 1} and {∂j}j=1 and ∆ = ∑n j=1 ∂j are the hypercube partial derivat...