نتایج جستجو برای: bagging model
تعداد نتایج: 2105681 فیلتر نتایج به سال:
Ensembles of decision trees often exhibit greater predictive accuracy than single trees alone. Bagging and boosting are two standard ways of generating and combining multiple trees. Boosting has been empirically determined to be the more eeective of the two, and it has recently been proposed that this may be because it produces more diverse trees than bagging. This paper reports empirical nding...
Bagging and boosting are among the most popular resampling ensemble methods that generate and combine a diversity of classifiers using the same learning algorithm for the base-classifiers. Boosting algorithms are considered stronger than bagging on noisefree data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, i...
Model performance of the partial least squares method (PLS) alone and bagging-PLS was investigated in online near-infrared (NIR) sensor monitoring of pilot-scale extraction process in Fructus aurantii. High-performance liquid chromatography (HPLC) was used as a reference method to identify the active pharmaceutical ingredients: naringin, hesperidin and neohesperidin. Several preprocessing metho...
In this paper, we compare the performances of classifier combination methods (bagging, modified random subspace method, classifier selection, parametric fusion) to logistic regression in consideration of various characteristics of input data. Four factors used to simulate the logistic model are: (a) combination function among input variables, (b) correlation between input variables, (c) varianc...
Many applications aim to learn a high dimensional parameter of a data generating distribution based on a sample of independent and identically distributed observations. For example, the goal might be to estimate the conditional mean of an outcome given a list of input variables. In this prediction context, bootstrap aggregating (bagging) has been introduced as a method to reduce the variance of...
Abstract: Bagging is a device intended for reducing the prediction error of learning algorithms. In its simplest form, bagging draws bootstrap samples from the training sample, applies the learning algorithm to each bootstrap sample, and then averages the resulting prediction rules. More generally, the resample size M may be different from the original sample size N , and resampling can be done...
Comparing different novel feature sets and classifiers for speech processing based fatigue detection is the primary aim of this study. Thus, we conducted a within-subject partial sleep deprivation design (20.00–04.00 h, N1⁄477 participants) and recorded 372 speech samples of sustained vowel phonation. The self-report on the Karolinska Sleepiness Scale (KSS) and an observer report on the KSS, th...
Comparing different novel feature sets and classifiers for speech processing based fatigue detectionis is the primary aim of this study. Thus, we conducted a within-subject partial sleep deprivation design (20.00 04.00 h, N = 77 participants) and recorded 372 speech samples of sustained vowel phonation. The self-report on the Karolinska Sleepiness Scale (KSS), and an observer report on the KSS,...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید