نتایج جستجو برای: back neural network ffnn

تعداد نتایج: 971694  

Journal: :Water 2021

The bulk of water pipes experience major degradation and deterioration problems. This research aims at estimating the condition in Shattora Shaker Al-Bahery’s distribution networks, Egypt. developed models involve training Elman neural network (ENN) feed-forward (FFNN) coupled with particle swarm optimization (PSO), genetic algorithms (GA), sine cosine algorithm (SCA), teaching-learning-based (...

2004
ERIK HULTHÉN Erik Hulthén

In this thesis, artificial neural networks (ANNs) are used for prediction of financial and macroeconomic time series. ANNs build internal models of the problem and are therefore suited for fields in which accurate mathematical models cannot be formed, e.g. meteorology and economics. Feedforward neural networks (FFNNs), often trained with backpropagation, constitute a common type of ANNs. Howeve...

Angelos P. Markopoulos Dimitrios E. Manolakos Sotirios Georgiopoulos

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

Sh Gharibzadeh B Saboori R Azadi SM Aghdaee

Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...

In this work, the artificial neural networks (ANN) technology was applied to the simulation of oleuropein extraction process. For this technology, a 3-layer network structure is applied, and the operation factors such as  amount  of  flow  intensity  ratio,  temperature,  residence  time,  and  pH  are  used  as  input  variables  of  the network,  whereas  the  extraction  yield  is  considere...

Journal: :civil engineering infrastructures journal 0
kazem barkhordari assistant professor, department of civil engineering, yazd university, yazd, iran hosein entezari zarch m.sc. student, department of civil engineering, yazd university, yazd, iran.

this research intends to develop a method based on the artificial neural network (ann) to predict permanent earthquake-induced deformation of the earth dams and embankments. for this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. in order to predict earthquake-induced deformation o...

Journal: :مرتع و آبخیزداری 0
مریم خسروی کارشناسی¬ارشد آبخیزداری، دانشکده منابع طبیعی، دانشگاه تهران، ایران علی سلاجقه دانشیار دانشکده منابع طبیعی، دانشگاه تهران، ایران محمد مهدوی استاد دانشکده علوم فنون دریایی، دانشگاه آزاد اسلامی، واحد تهران شمال‏، ایران محسن محسنی ساروی استاد دانشکده منابع طبیعی، دانشگاه تهران، ایران

it is necessary to use empirical models for estimating of instantaneous peak discharge because of deficit of gauging stations in the country. hence, at present study, two models including artificial neural networks and nonlinear multivariate regression were used to predict peak discharge in taleghan watershed. maximum daily mean discharge and corresponding daily rainfall, one day antecedent and...

In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...

This research intends to develop a method based on the Artificial Neural Network (ANN) to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation o...

Journal: :iranian journal of applied animal science 2014
s. ghazanfari

this study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ann) in broiler chicken. artificial neural networks (anns) are powerful tools for modeling systems in a wide range of applications. the ann model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید