نتایج جستجو برای: back neural network ffnn
تعداد نتایج: 971694 فیلتر نتایج به سال:
The bulk of water pipes experience major degradation and deterioration problems. This research aims at estimating the condition in Shattora Shaker Al-Bahery’s distribution networks, Egypt. developed models involve training Elman neural network (ENN) feed-forward (FFNN) coupled with particle swarm optimization (PSO), genetic algorithms (GA), sine cosine algorithm (SCA), teaching-learning-based (...
In this thesis, artificial neural networks (ANNs) are used for prediction of financial and macroeconomic time series. ANNs build internal models of the problem and are therefore suited for fields in which accurate mathematical models cannot be formed, e.g. meteorology and economics. Feedforward neural networks (FFNNs), often trained with backpropagation, constitute a common type of ANNs. Howeve...
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...
In this work, the artificial neural networks (ANN) technology was applied to the simulation of oleuropein extraction process. For this technology, a 3-layer network structure is applied, and the operation factors such as amount of flow intensity ratio, temperature, residence time, and pH are used as input variables of the network, whereas the extraction yield is considere...
this research intends to develop a method based on the artificial neural network (ann) to predict permanent earthquake-induced deformation of the earth dams and embankments. for this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. in order to predict earthquake-induced deformation o...
it is necessary to use empirical models for estimating of instantaneous peak discharge because of deficit of gauging stations in the country. hence, at present study, two models including artificial neural networks and nonlinear multivariate regression were used to predict peak discharge in taleghan watershed. maximum daily mean discharge and corresponding daily rainfall, one day antecedent and...
In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...
This research intends to develop a method based on the Artificial Neural Network (ANN) to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation o...
this study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ann) in broiler chicken. artificial neural networks (anns) are powerful tools for modeling systems in a wide range of applications. the ann model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید