نتایج جستجو برای: مدل شیکه عصبی
تعداد نتایج: 129211 فیلتر نتایج به سال:
مدلسازی فرآیند بارش - رواناب و پیشبینی دبی رودخانه یک اقدام مهم در مدیریت و مهار سیلابها، طراحی سازههای آبی در حوزههای آبخیز و مدیریت خشکسالی است. هدف این تحقیق شبیهسازی جریان روزانه در حوزه آبخیز کسیلیان با استفاده از شبکه عصبی مصنوعی و شبکه عصبی- فازی تطبیقی است. روشهای هوشمند دارای قابلیت بالایی برای برقراری ارتباط بین دادههای ورودی و خروجی میباشند. در این تحقیق از آمار بارش، تبخیر ...
هدف از انجام این تحقیق مقایسة کارایی مدل های رگرسیون چند متغیره و شبکة عصبی مصنوعی (ann) جهت پیش بینی مقدار فعالیت آنزیم های آنتی اکسیدان سوپراکسید دیسموتاز (sod)، کاتالاز (cat)، آسکوربات پراکسیداز (apx) و پراکسیداز (pox) در شاخسارة گندم (triticumaestivum) رقم الوند در خاک آلوده به کادمیم بود. تیمارهای آزمایش شامل چهار سطح کادمیم (صفر (شاهد)، 25، 50 و 100 میلی گرم کادمیم در کیلوگرم خاک) بود. پس...
یکی از مؤثرترین راهکارها برای افزایش راندمان نیروگاه، بهبود سیستم کنترل آن است. برای چنین بهبودی داشتن مدل دقیقی از مولد بخار نیروگاه ضروری است. در این مقاله، یک مولد بخار صنعتی به عنوان یک سیستم غیرخطی چندمتغیره برای شناسایی در نظر گرفته میشود. یک گام مهم در شناسایی غیرخطی سیستم، گسترش دادن یک مدل غیرخطی است. در سال های اخیر، شبکههای عصبی مصنوعی به طور موفقیت آمیزی در شناسایی سیستمهای غیرخط...
پیش بینی کمیت تولید، نقشی اساسی در بهینه سازی و برنامه ریزی سیستم مدیریت مواد زاید جامد شهری دارد. اما به دلیل طبیعت ناهمگون و تأثیر عوامل متنوع و خارج از کنترل بر تولید، همواره با مشکلات زیادی همراه بوده است. شبکة عصبی مصنوعی اخیراً در بسیاری از کاربردهای مهندسی نظیر مهندسی محیط زیست به عنوان ابزاری قدرتمند در مدلسازی مورد توجه قرار گرفته است. در این تحقیق با توجه به دینامیک و پیچیده بودن سیستم...
فرآیند نورد در کانال همسان زاویهدار از فرآیندهای تغییر فرم شدید پلاستیک جهت دستیابی به ساختار فوقریز دانه میباشد. در این مقاله به بررسی این فرآیند و تأثیر پارامترهای آن به کمک مدلسازی شبکهی عصبی مصنوعی و رگرسیون غیرخطی پرداختهشده است. بهمنظور پیشبینی خواص مکانیکی نمونه آلومینیم 6061 حاصل از فرآیند نورد در کانال همسان زاویهدار از شبکه عصبی پس انتشار پیشخور استفادهشده است. پارامترهای ز...
در این مطالعه قابلیت مدلهای شبکه عصبی مصنوعی در زمینه تولید مصنوعی جریان ارزیابی می شود. مدلی که برای تولید مصنوعی بکار رفته با ترکیب مدل شبکه عصبی و یک مؤلفه تصادفی با توزیع نرمال ایجاد شده است. در توسعه مدل از شبکه عصبی چند لایه تغذیه پیشرفتی با الگوریتم آموزشی انتشار برگشتی خطا استفاده شده است. بر این اساس مدل، سری های بلند مدت و تا 300 سال جریان مصنوعی روزانه در رودخانه خرسان را تنها با اس...
یافتن مناسبترین ورودیها برای شبکۀ عصبی و همچنین تعداد مناسب ورودی برای آن یکی از چالشهایی است که همواره محققان با آن روبهرو هستند. اغلب، بهترین ساختار برای شبکۀ عصبی نیز بهصورت آزمون و خطا مشخص میشود و درنهایت با تعریف چند ورودی خاص مدلهای مختلفی تولید و بررسی میشوند. در این تحقیق به مدلسازی کیفی جریان رودخانۀ گادارچای با استفاده از شبکۀ عصبی مصنوعی پرداخته شده و دو مدل و برای هر مدل ...
یکی از جنبههای حائز اهمیت در مدیریت محیط در ژئومورفولوژی کاربردی حل مشکل برآورد رسوب یک سیستم رودخانهای میباشد. هدف این مطالعه ارزیابی عملکرد مقایسهای دونوع شبکه عصبی مصنوعی (مدل ژئومورفولوژیکی و مدل غیر ژئومورفولوژیکی) و دو نوع مدل رگرسیونی (مدل توانی ومدل غیر خطی چندگانه) برای پیش بینی بار رسوب معلق حوضه اسکندری در حوضه آبریز زاینده رود میباشد. مدلها براساس آمار 104 حادثه وقوع همزمان ثب...
دستیابی به رشد مستمر و مداوم اقتصادی و به موجب آن توسعه اقتصادی را می توان از زمره اهدافی قلمداد نمود که تمام کشورها در پی دستیابی به آن می باشند. در این راستا بانک ها نقش بسیار مهمی در پیشرفت و توسعه اقتصادی هر کشور ایفا می نمایند. در حال حاضر با توجه به تعداد قابل توجه بانک های دولتی و خصوصی در کشور پیش بینی کارایی آن ها اهمیت ویژه ای پیدا کرده است. هدف از این پژوهش، مدلسازی و پیش بینی کارایی...
با توجه به اهمیت پیشبینی جریان رودخانه در مدیریت منابع آب روشهای مختلفی برای مدل کردن جریان رودخانهها بکار برده میشوند. تا بتوان با بکارگیری این مدل در مدیریت خشکسالی و سیلاب خسارات ناشی از آنها را به حداقل ممکن رساند. در این مطالعه نیز برای پیشبینی سری زمانی جریان روزانه ایستگاه ونیار، با توجه به ویژگیهای غیرخطی مقیاسهای زمانی چندگانه، مدل هیبرید شبکه عصبی و موجک پیشنهاد شده است. برا...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید