نتایج جستجو برای: فضاهای متریک فازی کامل
تعداد نتایج: 72927 فیلتر نتایج به سال:
فرض کنیم g یک گروه هاوسدروف فشرده باشد. فضاهای مداری توسیع کننده همسایگی مطلق هم وردا را در رده ای از همه ی g - فضاهای متریک پذیر سره با g - متریک پایا را مورد مطالعه قرار می دهیم. ثابت می کنیم اگر g - فضای سره x یک g-ane باشد و h یک زیرگروه نرمال بسته g باشد به طوری که همه ی h - مدارها در x متریک پذیر باشند آنگاه h - فضای مداری، x/h یک ( g/h-ane است.
در این پایان نامه به بررسی فضاهای نرمدار فازی می پردازیم. هم چنین فضاهای نرمدار l- فازی غیرارشمیدسی را معرفی کرده و پایداری معادلات تابعی مربعی و مربعی فوق العاده را در این فضا بررسی می کنیم. در پایان به معرفی فضای n- نرم l- فازی غیرارشمیدسی خواهیم پرداخت و پایداری معادله تابعی مربعی را در این فضا اثبات می کنیم.
فضاهای (cat(0، رده ای از فضاهای متریک است که با استفاده از مفاهیم هندسی و ژئودزیک معرفی می شود. در این فضاهای متریک، مفهوم تحدب به شیوه مناسبی معرفی می شود. این ابزار مفید، باعث می شود که بسیاری از مفاهیم آنالیز محدب از جمله نظریه نقطه ثابت، در این رده از فضاهای متریک، خواص جالب و مفیدی داشته باشد. نظریه نقطه ثابت در فضای $ cat(0) $ اولین بار توسط کرک در سال 2004 مطالعه شد. ...
در ابتدا فضاهای شبه متریک ،b- متریک ومتریک جزئی تعریف می شود .سپس وجود ویکتایی نقاط ثابت در این فضاها بررسی می شود وبه عنوان یک کاربرد ،نتایج جدید ی از نقاط ثابت ونقاط ثابت دوتایی درفضاهای شبه متریک ،b- متریک ،b – شبه متریک ومتریک جزئی استنتا ج می شود .علاوه براین باچند مثال کاربرد این نتایج توضیح داده خواهد شد .
هدف ما بررسی مجموعه ی فاصله های (بین نقاط) یک فضای لهستانی است. به همین منظور، در فصل اول آشنایی کوتاهی با فضاهای لهستانی و انواع خاص فضاهای متریک، مجموعه های افکنشی، آناکاویک و مکمل آناکاویک خواهیم داشت. قبلاً بررسی هایی راجع به مجموعه فاصله فضاهای متریک انجام شده است. در فصل دوم، قضایای پایه ای فضاهای لهستانی و مجموعه های آناکاویک را بررسی می کنیم. فصل سوم نیز، با اصلی ترین قضیه ی این پایان...
فضاهای متریک مخروطی با جایگزین کردن مجموعه اعداد حقیقی با یک فضای باناخ مطرح و قضایای بسیاری در مورد آن ثابت شده است. به عنوان تعمیمی از فضاهای متریک مخروطی، توسط برخی نویسندگان فضای باناخ فوق الذکر با یک فضای توپولوژیک برداری جابه جا شده است. با این تعمیم طیف گسترده تری از فضاهای مخروطی به دست می آید. در این پایان نامه به مطالعه این نوع فضاهای مخروطی پرداخته شده و چندین مقاله جدید در این خصوص ...
هدف بررسی قضایای نقطه ثابت برای نگاشت های مجموعه مقدار براساس تعاریف انقباضی، و موضعا انقباضی است. در این پایان نامه به بررسی چهار زاویه مختلف نگاه به تعمیم موضعا انقباضی بودن برای یک نگاشت مجموعه مقدار و شرایطی که تحت آن به نقطه ثابت می رسیم پرداخته ایم.
در این رساله، ابتدا به تعریف نگاشت مجموعه مقدار و خاصیت های مربوط به آن می پردازیم و در فصل دوم قضایای نقطه ثابتی را برای نگاشت های تک مقداری، در فضاهای متریک کامل مطرح کرده و سپس توسیع هایی از این قضایا را برای نگاشت های مجموعه مقدار ارائه می دهیم. در پایان، فصل سوم، این توسیع ها را با استفاده از روش تغییر فاصله گسترش می دهیم.
حوادث طبیعی و از جملهی آنها زلزله، همیشه به عنوان یکی از مخربترین عوامل آسیبرسان در سکونتگاههای انسانی از دیرباز مطرح بودهاست. این مسأله در شهرها به عنوان عالیترین مراکز تجمع انسانی، به علت تراکم جمعیتی و با توجه به آسیب پذیری بافتهای قدیمی و فرسوده در آنها، بحث برنامهریزی و مدیریت بحران را به عنوان ضرورتی غیر قابل اجتناب مطرح میسازد. در پژوهش حاضر که از لحاظ روششناسی به صورت «توصی...
هدف ما در این پایان نامه توصیف کاملی از خاصیت arدر زیر مجموعه های محدب از فضاهای خطی متریک بر حسب گزینش های نزدیک معینی می باشد. به عبارت دقیق تر : در نتیجه اصلی پایان نامه ثابت می کنیم که زیر مجموعه های محدب در فضاهای خطی متریک هستند arاگر وتنها اگر زیر مجموعه های محدب در فضاهای خطی متریکدارای خاصیت گزینش نزدیک متناهی البعدباشند.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید