نتایج جستجو برای: شبکه های عصبی dea
تعداد نتایج: 494776 فیلتر نتایج به سال:
در این پژوهش برای تعیین روش پیش بینی قیمت سهام، یک شبکه عصبی LM-BP بر اساس سری های زمانی با توجه به قیمت باز، بالاترین قیمت، پایین ترین قیمت، قیمت بسته و حجم معاملات ارائه شد. در پژوهش حاضر، 315 روز قیمت سهام را برای ایجاد 10 نمونه انتخاب و مجموعه آزمون شامل قیمت سهام از روز 316 تا روز 320 را انتخاب و از شبکه عصبی LM-BP استفاده شده است. در این پژوهش، تعیین نقطه بحرانی بیش از حد، عدم تقارن و شما...
سرمایه¬ فکری به عنوان سرمایه واقعی و یکی از مهمترین سرمایه¬های سازمانها و شرکتهای عصر حاضر مطرح است. هدف از اجرای این تحقیق بررسی عملکرد شبکه¬های عصبی مصنوعی در پیش¬بینی کارایی سرمایه فکری شرکت¬های پذیرفته شده در بورس اوراق بهادار می باشد. در این تحقیق ابتدا با استفاده از مدل تحلیل پوششی داده¬ها و با در نظر گرفتن متغیر ضریب ارزش افزوده سرمایه فکری به عنوان ورودی مدل و سه متغیر بازده سهام، نرخ ب...
قواعد استخراج شده از یک مجموعه داده در فرآیند داده کاوی، به دلیل اهمیت در حوزه های کسب و کار همواره نیازمند رتبه بندی هستند تا بهترین و قابل اعتمادترین آنها را بتوان انتخاب نمود . تحلیل پوششی داده ها (data envelopment analysis ? dea) روشی است که برای رتبه بندی عادلانه نامزدها در یک انتخابات ترجیحی مطرح شد؛ و مو-چن چن برای اولین بار این روش را برای رتبه بندی قواعد پیوندی استخراج شده در داده کاوی...
در این مقاله روش جدیدی برای مدل سازی خطی سیستم های غیر خطی ارائه می گردد . اساس روش پیشنهادی طراحی یک شبکه عصبی مصنوعی دو لایه و آموزش آن بر مبنای داده های ورودی- خروجی است . وزن های اتصالات این شبکه ضرایب تابع تبدیل هستند . در سیستم هایی که رفتار آنها خطی باشد ، روش حداقل کردن مربعات خطا (lse) بهترین نتایج مدل سازی را ارائه می نماید . در سیستم هایی که رفتار غیر خطی دارند ، نظیر بعضی قسمت های ب...
چکیده شبکه های عصبی در دهه ی اخیر به عنوان ابزار قدرتمندی جهت پیش بینی در حوزه های مختلف مورد استفاده قرار گرفته اند. در این تحقیق از شبکه عصبی پیشخور پرسپترون چند لایه (MLP) با یادگیری پس انتشار از الگوریتم آموزش انتشار به عقب (BP)، با تکنیک بهینه سازی عددی لونبرگ- مارکوات (LM)،توسط نرم افزار متلب مورد استفاده قرار گرفت. درصد رطوبت کیک ، دمای پرس و زمان بسته شدن پرس به عنوان متغیرهای ورودی و خ...
در این پژوهش از جاذب نانوذره ZnO-Cr نشانده شده بر کربن فعال به منظور حذف رنگ دی سولفین بلو استفاده شده و سپس با کمک شبکه عصبی مصنوعی میزان حذف آن را پیش بینی شد. اثر پارامترهای گوناگون شامل pH، مقدار جاذب، غلظت رنگ ها و زمان به هم خوردن روی درصد حذف به روش فناوری های طراحی آزمایش مورد بررسی و بهینه شد. همچنین مدل های سینتیکی و هم دماهای جذبی و همچنین پارامترهای ترمودینامیکی مورد بررس...
در تحقیق حاضر، هدف مقایسه تخمین بار رسوب معلق در سدهای مخزنی با استفاده از شبکه عصبی مصنوعی و سیستم استنتاج فازی- عصبی می باشد. بررسیها توسط برنامه MATLAB انجام شده است و ورودی ها شامل دبی رودخانه سفید رود و خروجی، غلظت رسوب در گام زمانی بوده است.ورودی و خروجی رسوب دارای روند مثبت بوده و 80 درصد داده ها جهت آموزش و 20 درصد داده ها جهت آزمون شبکه مورد استفاده قرار گرفت. از تعداد 229 داده موجود ...
برای طرح و مدیریت روسازی، پیش بینی عمر خستگی مخلوطهای آسفالتی، مورد نیاز بوده و مورد توجه پژوهشگران مختلف قرارگرفته است. این تحقیق به دنبال بکارگیری تکنیک شبک ههای عصبی ) ANN ( برای پیش بینی عمر خستگی مخلوطهای آسفالتی است. به دلیل محدودیت و عدم دسترسی به داد ههای جامع آزمایشگاهی مربوط به عمر خستگی در داخل کشور، در این تحقیق از داد ههای آزمایشگاهی ایالت کانزاس آمریکا برای مدل سازی استفاده شده اس...
پیشرفتهای اخیر در کشاورزی دقیق سبب شده است تا مدل های قابل انعطاف مختلفی جهت پیش بینی، طبقهبندی و تهیه نقشههای دقیق از جمعیت علفهای هرز به منظور کنترل متناسب بامکان آنها ارائه شود. این پژوهش به منظور پیش بینی الگوی پراکنش جمعیت علف هرز تلخه با استفاده از شبکه عصبی بردار چندی ساز یادگیر(lvqnn) در سطح مزرعه انجام شد. داده های مربوط به تراکم جمعیت علف هرز تلخه از طریق نمونه برداری بر روی یک ش...
پیش بینی سود هر سهم و تغییرات آن به عنوان یک رویداد اقتصادی از دیرباز موردعلاقه سرمایه گذاران، مدیران، تحلیل گران مالی و اعتباردهندگان بوده است. این توجه ناشی از استفاده سود در مدل های ارزیابی سهام، کمک به کارکرد کارای بازار سرمایه، ارزیابی توان پرداخت و ارزیابی عملکرد واحد اقتصادی می باشد. هدف این تحقیق پیش بینی سود هر سهم با استفاده از شبکه عصبی – فازی و شبکه عصبی درک چندلایه(mlp) و gmdh و تع...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید