نتایج جستجو برای: زیرگروه x

تعداد نتایج: 624161  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم 1391

می دانیم که همه زیرگروه های پوچ توان حل پذیر هستند. فرض کنید تعداد زیرگروه های ماکسیمال غیر نرمال گروه متناهی g پوچ توان باشند, نشان می دهیم که g حل پذیر است و به ازای برخی عدد اولp, p-پوچ توان است. و اگر g ناپوچ توان باشد تعداد مقسوم علیه های اول مرتبه g بین 2وk+2 خواهد بود. که k تعداد زیرگروه های ماکسیمال نرمال هستند که پوچ توان نمی باشند.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه کاشان - دانشکده ریاضی 1391

میزور زیر گروه تابی خم های بیضوی تعریف شده روی q را مشخص کرد.همچنین او به همراه کمینی توانست زیرگروه تابی خم های بیضوی روی میدان های مربعی را نیز تعین کند.در ادامه کار آنها جون،لی و کیم نیز به صورت مشترک در مقاله ای، خانواده ای از خم های بیضوی روی میدان های عددی مربعی با زیرگروه تابی معین که حاصل کار میزور و کمینی است مورد مطالعه قرار دادند.همچنین جون، کیم و اسکویزر زیرگروه تابی خم های بیضوی رو...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی 1387

فرض کنید f یک تابعگون باشد که به هر گروه g خانواده ای از زیرگروه هایش را نسبت دهد به طوری که به ازای هر همریختی a ازg داشته باشیم ((f(a(g))=a(f(g . تعریف می کنیم دو زیرگروه h و k از گروه g جابه جایی شونده هستند اگر hk=kh .علاوه بر این زیرگروه h جابه جاپذیر یا شبه نرمال است اگر با هر زیرگروه g جابه جایی شونده باشد .همچنین زیرگروه های hو k در یک گروه g دوبه دو f- جابه جاپذیر هستند اگرh با هر عضو ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده علوم ریاضی 1393

فرض کنیم ‎g‎ یک گروه‏، ‎n‎‏ و ‎m‏ ‎‎زیرگروه های نرمال آن باشند. در اینصورت مجموع? هم? خودریختی های g که اعضای g/n‎ نقطه به نقطه حفظ می کنند، یا به صورت معادل به ازای هر g?g و ??aut(g) ، g^(-1) ?(g)?n، زیرگروه خودریختی های g است و آن را با علامت aut^n (g) نمایش می دهیم‏. ‎ به همین ترتیب مجموع? هم? خودریختی های g که اعضای m‎ نقطه به نقطه حفظ می کنند، یا به صورت معادل به ازای هر m?m و ??aut(g ، ?(...

رضا رستمی سهیلا عیسایی, صفورا بابایی محمدعلی نظری,

هدف:هدف این پژوهش مقایسه کارکردهای مغزی و ویژگی­های رفتاریدر شرایط انجام تکالیف حافظه­کاری در دو زیرگروه از اختلال بیش فعالی/ کمبود توجه (ADD و ADHD) از طریق پتانسیل­های وابسته به رویداد (ERP) می­باشد. روش: در این پژوهش آزمودنی­ها 8 الی 12 ساله (12 نفر ADD و 13 نفر ADHD) که بر اساس چک لیست مصاحبه بالینی (DSM- IV- TR) و نتایج مقیاس درجه­بندی SNAP-IV اجرای والدین انتخاب شده بودند، از نظر سن، جنس،...

ژورنال: :مجله علوم پزشکی رازی 0
اباذر روستازاده میانده a. roostazadeh miandeh, محسن فیروزرای m. firoozrai, محمد شعبانی m. sha'bani,

زمینه و هدف: گونه های واکنشگر اکسیژن از طریق اکسیداسیون پروتئین ها و یا به راه انداختن آبشار پراکسیداسیون لیپیدی، بسیاری از عملکردهای سلولی را تحت تأثیر قرار می دهند. در این مطالعه تغییر فعالیت آنزیم گلوتاتیون پراکسیداز گلبول قرمز و سطح آنتی اکسیدان تام پلاسما در اثر تزریق عصاره آبی securigera securidaca در موشهای صحرایی دیابتی بررسی شده است.   روش بررسی: در مطالعه تجربی حاضر از 30 موش صحرایی ن...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده ریاضی 1391

خمهای بیضوی از مطالعه روی توابع بیضوی نشئت گرفته است که نتیجه کار ریاضیدانانی چون وایرشتراس، آبل و ژاکوپی می باشد. یک خم بیضوی با معادله y^2=x^3+ax+b تعریف می شود که برای ضرایب گویای a و b مقدار عبارت 4a^3+27b^2 ناصفر است. جوابهای گویای این خم تشکیل گروهی به نام مردل- ویل با نماد (e(q می دهد. در سال 1901 هنری پوانکاره حدس زد که این گروه متناهی مولد است. در سال 1922 ساختار e(q) توسط لوئیس مردل ت...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده علوم 1388

این پژوهش با هدف مطالعه تأثیر استروژن به ¬صورت تزریقی و موضعی بر روند ترمیم زخم در موش¬های نر سالم و دیابتی انجام گرفت. برای این منظور، موش های صحرایی نر به دو گروه سالم و دیابتی تقسیم شدند. هر گروه به سه زیرگروه کنترل (دست¬نخورده)، شاهد (دریافت¬کننده¬ حلال) و تست (دریافت¬کننده ¬استرادیول به ¬همراه حلال) طبقه¬بندی شدهﺍند. در کلیه گروه¬ها یک زخم مدور با قطر cm5/1 بر سطح پشتی موش¬های سالم و دیا...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم انسانی 1387

موضوع اصلی این رساله مطالعه n- پوشش های یک گروه متناهی می باشد. یک n- پوشش گروه مفروض g طبق تعریف عبارت است از اجتماع یک گردایه n عضوی از زیرگروه های سره g به طوری که آن گردایه برابر g باشد و دارای هیچ زیر گردایه ای با این ویژگی نباشد. در این رساله عمدتا به مطالعه n- پوشش ها تا6≥n می پردازیم. این رساله مشتمل بر چهار فصل است:در فصل اول تعاریف و قضایای مورد نیاز در رابطه با گروه ها ذکر می شود. با...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده ریاضی 1391

یک پوشش برای گروه مفروض g، عبارت است از گردایه ای از زیرگروه های سره ی g که اجتماع آنها برابر g است. در [6]، کوهن، کوچکترین عدد صحیح n را به طوریکه اجتماع n زیرگروه سره برابرg است، (?(g تعریف کرده است. برخی نتایج اثبات شده از گروه های حل پذیر، به حدس اینکه اگر g یک گروه متناهی غیر دوری باشد در این صورت ?(g)=p^?+1 است، منجر می شود به طوریکه در آن p^?، مرتبه یک فاکتور اصلی از g است....

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید