Given a set of n points, P, in E d (the plane when d = 2) that lie inside a d-box (rectangle when d = 2) R, we study the problem of partitioning R into d-boxes by introducing a set of orthogonal hyperplane segments (line segments when d = 2) whose total (d?1)-volume (length when d = 2) is the least possible. In a valid d-box partition, each point in P must be included in at least one partitioni...