نتایج جستجو برای: حاصل ضرب تانسوری
تعداد نتایج: 113322 فیلتر نتایج به سال:
گراف کنسر گرافی است که راس هایش تمام زیر مجموعه های k عضوی از مجموعه 1 تا n است. که b-رنگ آمیزی گراف کنسر را بحث کرده ایم. همچنین b-رنگ آمیزی گراف منتظم از درجه d را بررسی می کنیم. بزرگترین افراز را برای چنین گرافی با درجه کمتر از شش به دست آورده ایم. ازطرفی گراف به دست آمده از حاصل ضرب دکارتی دو گراف را b-رنگ آمیزی کرده ایم . برای چنین رنگ آمیزی از مستطیل لاتین استفاده می کنیم.
نمایش های گروه و آنالیز هارمونیک نقش حساسی در مباحث متنوعی چون نظریه اعداد، احتمال و ریاضی فیزیک ایفا می کنند. قضیه نمایش لانگلندز عنصری اساسی در کار وایلز روی آخرین قضیه فرما بود و نظریه نمایش چارچوبی برای پیش بینی وجود کوارک ها فراهم کرد. در این مقاله نظریه نمایش و ارتباط آن را با آنالیز هارمونیک دوره می کنیم.
یک مفهوم جدید از ضرب داخلی بر مجموعه های فازی معرفی می شود، از روی مطالعه و استفاده برای اثبات چندین قضیه ابتدایی که وجود، یکتایی و کرانداری جواب ها از معادلات دیفرانسیل فازی. یک نتیجه پایاهمچنین در زمینه یکسانی ثابت می شود.
عدد رنگی مساوی یک گراف با chi _=(g) نشان داده می شود و عبارت است از کوچک ترین عدد صحیح n به طوری که مجموعه رئوس گراف g ا بتوانیم به n تا مجموعه ی مستقل افراز کرد و اختلاف اندازه رئوس در هر دو مجموعه ی مستقل(کلاس رنگی) حداکثر عدد یک باشد. آستانه رنگی مساوی گراف g را با chi ^*_=(gنشان داده می شود و عبارت است از کوچک ترین عدد صحیح n به طوری که گراف g برای همه ی r geq n، r-رنگ پ...
رای فابیلا مونروی و همکاران در (7) بصورت زیر به معرفی گراف نشان پرداخته اند. به ازای گراف g و عدد صحیح 1 ≤ k گراف نشان (fk(g گرافی است با مجموئه رئوس همه ی زیر مجموعه های k تایی از(v(g که در آن دو راس در (fk(g زمانی مجاورند که تفاضل متقارنشان یک زوج رأس مجاور در g باشد. در این پایان نامه به بررسی خواص از گراف نشان از جمله همبندی، قطر ، عدد خوشه ، عدد رنگی ، مسیر های همیلتنی ، و حاصلضرب دکارتی گ...
در این پایان نامه،نامساویهای ضرایبی برای رده های معینی از توابع تحلیلی و تک ارز در دایره واحد مورد مطالعه قرار می گیرد. همچنینبراورد ضرایب، شعاع تحدب و سایر خواص زیر رده ای از این خانواده، بنام توابع p- مقداری با ضرایب منفی بررسی می شود.
در این پایان نامه، هدف بررسی معادلات سیلوستر تعمیم یافته-مزدوج با استفاده از روش گرادیان مزدوج می باشد. همچنین به مطالعه روش گرادیان مزدوج پیش شرط شده برای معادلات سیلوستر تعمیم یافته پرداخته و پیش شرط های ژاکوبی، گاوس سایدل اصلاح شده و ssor بررسی می شوند. سرانجام برخی نتایج عددی همراه با مقایسه بین روش ها ارائه می گردد.
یکی از مسائل اصلی نظریه اشتقاق ها، اثبات پیوستگی خود به خود اشتقاق ها و درونی بودن اشتقاق های پیوسته است. در این ارتباط بررسی وجود اشتقاق های غیرپیوسته و غیر داخلی روی جبرهای توپولوژیک مختلف از اهمیت ویژه ای برخوردار است. با تلفیق دو ایده ی مطرح شده در بالا، یک مسئله اساسی، مطالعه ی جبرهایی است که فقط اشتقاق های داخلی دارند. ما در نظر داریم که یک شرح کاملی از اشتقاق ها روی جبر (s(m متشکل از همه...
جبر باناخ a را n-میانگین پذیر ضعیف می نامیم هرگاه هر اشتقاق از a بتوی n-امین دوگان آن داخلی باشد. در این پایان نامه ابتدا نشان داده ایم که تحت چه شرایطی الحاقی دوم یک اشتقاق، یک اشتقاق است. سپس ثابت کرده ایم برای nهای بزرگ تر از 1، n-میانگین پذیری ضعیف **n، a-میانگین پذیری ضعیف a را نتیجه می دهد.اما برای حالت n=1 نشان داده ایم که تحت برخی شرایط می توان از میانگین پذیری ضعیف **a، میانگین پذیری ض...
برای مجموعه مرتب شده $ w = lbrace w_{1}, w_{2},...,w_{k} brace $ از رئوس و رأس $ v $ در گراف همبند $ g $، نمایش $ v $ نسبت به $ w $، بردار $ k $-تایی egin{center} $ c_{w} = (d(v,w_{1}), d(v,w_{2}),.., d(v,w_{k}) ) $ end{center} است که $ d(x,y) $ نمایش فاصله بین دو رأس $ x,y $ است. مجموعه $ w $ جداکننده ای برای $ ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید