نتایج جستجو برای: اف مقسوم علیه مشترک
تعداد نتایج: 28941 فیلتر نتایج به سال:
فرض کنیم r یک حلقه جابجایی و یکدار باشد. گیریم z (r( نشان دهنده مجموعه مقسم علیه های صفر تا صفر حلقه r باد به حلقه r گرافی نسبت داده می شود که مجموعه ریوس آن (z(r است و در راس متمایز ( a,y z(rبا یک بال به هم وصل می شوند اگر و فقط اگر ay=oاین گراف را با (r) نشان می دهیم. در این پایان نامه قطر گراف های مقسوم علیه صفر و برحسب ایده آل های حلقه r مشخص سازی می شود. همچنین برای یک حلقه کاهش یافته r...
در این پایان نامه ساختار گراف مقسوم علیه صفر حلقه اعداد صحیح گاوسی به پیمانه n را مورد بررسی قرار می دهیم. برای هر عدد صحیح و مثبت n تعداد رئوس، قطر و کمر این گراف را می یابیم و ویژگی های کامل این گراف را برای هر n مورد بررسی قرار می دهیم و به تحقیق ددر مورد کامل بودن ، کامل دو بخشی بودن ، مسطح بودن ، منتظم بودن و یا اویلری بودن گراف می پردازیم.
در پایان کران بالا و پایینی برای تعداد یال های گراف مقسوم علیه صفر حلقه ماتریس های بالا مثلثی به دست می اوریم.
فرض کنید r یک حلقه جابه جایی با همانی ناصفر باشد. دوگان گراف مقسوم علیه صفر r، که با نماد(??(r نشان داده می شود، گرافی است ساده با مجموعه راس های (w*(r که (w*(r مجموعه عناصر ناصفر و نایکال r می باشد و دو راس متمایز x و y مجاورند اگر و تنها اگر x عضو ry نباشد و y عضو rx نباشد. در این پایان نامه، ارتباط بین r و (??(r را بررسی می کنیم. همچنین ارتباط بین (??(r با گراف مقسوم علیه صفر و گراف هم م...
در این پایان نامه ما، گراف کلاس های هم ارزی مقسوم علیه های صفر یک حلقه جابجایی r را مطالعه می کنیم. در ادامه چگونگی دریافت اطلاعاتی درباره حلقه r از این ساختار را نشان می دهیم. به ویژه چگونگی شناسایی اول وابسته های حلقه r را به کمک گراف کلاس های هم ارزی مقسوم علیه های صفر آن تعیین می کنیم. ایده اصلی این پایان نامه از مقاله s. spiroff, c. wickham, a zero divisor graph determind by equivalence...
فرض کنیم r حلقه جابه جایی باشد. گراف کلی r را که باt(ᴦ(r) نشان داده می شود، گرافی است با همه اعضای r، به عنوان رئوس ودوراس x, y ∈ r مجاورند، اگروفقط اگرx + y ∈ z(r) ، که در آن (z(r مقسوم علیه های صفرحلقه r می باشد. گراف منظم حلقه r که با reg(ᴦ(r) نشان داده می شود زیرگرافی القایی از t(ᴦ(r) است که رئوس آن، عناصرمنظم حلقه r می باشد وگراف مقسوم علیه صفرحلقه r که با z(ᴦ(r)) نشان داده می شود، زیرگراف...
در این پایان نامه ابتدا نظریه مقسوم علیه ها را بیان می کنیم و سپس با استفاده از آن به تعریف و محاسبه ی زوجیت وایل، که نقش مهمی در زمینه محاسباتی روی خم های بیضوی بازی می کند، می پردازیم. نظریه زوجیت وایل امروزه دارای کاربردهای فراوان بویژه در سیستم های رمزنگاری مبنی بر خم های بیضوی می باشد (2). لذا داشتن الگوریتم مناسب برای محاسبه ی سریعتر زوجیت وایل از اهمیت ویژه ای برخوردار است. میلر الگوریت...
فرض کنیم r حلقه ای جابه جایی و یکدار باشد.در این پایان نامه گراف ایده آل های پوچ ساز یکدیگر r را مطالعه می کنیم.این گراف را با علامت (ag(r نشان می دهیم که گرافی غیر جهت دار با مجموعه رئوس a(r)*=a(r)-{(0)} است. که در آن a(r) مجموعه همه ایده آل هایی از r است که دارای پوچ ساز ناصفر باشند.دو راس iو j در این گراف مجاورند اگر و فقط اگر ij=0 به طور خلاصه مهم ترین ویژگی های مورد بررسی در این پایان نام...
در این پایان نامه، گراف ایده آل-پوچ یک حلقه ی جابه جایی و یک دار r که با نماد (ag(r نمایش می دهیم، مورد مطالعه قرار می گیرد. در ابتدا شرایط تناهی گراف ایده آل-پوچ و در ادامه همبندی این گراف، قطر و رنگ آمیزی آن بررسی خواهد شد.
گراف مقسوم علیه صفر یک حلقه s که لزوما تعویض پذیر نیست و با vec {?}(s) نمایش داده می شود، یک گراف ساده جهت دار است که در آن مجموعه مقسوم علیه های صفر ناصفر به عنوان رئوس در نظر گرفته می شوند و راس a به b توسط یک جهت به صورت a ? b متصل است اگر و تنها اگر ab=0. فرض می کنیم r یک حلقه تعویض پذیر یکدار و t_{n}(r) حلقه ی ماتریس های بالا مثلثی n×n روی r باشد. در این پایان نامه گر...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید