S. Khademloo

Department of basic sciences, babol noushirvani university of technology, babol, Iran

[ 1 ] - Existence and multiplicity of nontrivial solutions for‎ ‎$p$-Laplacian system with nonlinearities of concave-convex type and‎ ‎sign-changing weight functions

This paper is concerned with the existence of multiple positive‎ ‎solutions for a quasilinear elliptic system involving concave-convex‎ ‎nonlinearities‎ ‎and sign-changing weight functions‎. ‎With the help of the Nehari manifold and Palais-Smale condition‎, ‎we prove that the system has at least two nontrivial positive‎ ‎solutions‎, ‎when the pair of parameters $(lambda,mu)$ belongs to a c...

[ 2 ] - Existence of a positive solution for a p-Laplacian equation with‎ ‎singular nonlinearities

‎In this paper‎, ‎we study a class of boundary value problem‎ ‎involving the p-Laplacian oprator and singular nonlinearities‎. ‎We‎ ‎analyze the existence a critical parameter $lambda^{ast}$ such‎ ‎that the problem has least one solution for‎ ‎$lambdain(0,lambda^{ast})$ and no solution for‎ ‎$lambda>lambda^{ast}.$ We find lower bounds of critical‎ ‎parameter $lambda^{ast}$‎. ‎We use the method ...

[ 3 ] - The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

نویسندگان همکار