M. Baziar
Department of Mathematics, Yasouj University, Yasouj,75914, Iran.
[ 1 ] - A module theoretic approach to zero-divisor graph with respect to (first) dual
Let $M$ be an $R$-module and $0 neq fin M^*={rm Hom}(M,R)$. We associate an undirected graph $gf$ to $M$ in which non-zero elements $x$ and $y$ of $M$ are adjacent provided that $xf(y)=0$ or $yf(x)=0$. Weobserve that over a commutative ring $R$, $gf$ is connected anddiam$(gf)leq 3$. Moreover, if $Gamma (M)$ contains a cycle,then $mbox{gr}(gf)leq 4$. Furthermore if $|gf|geq 1$, then$gf$ is finit...
[ 2 ] - ANNIHILATING SUBMODULE GRAPHS FOR MODULES OVER COMMUTATIVE RINGS
In this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. Weobserve that over a commutative ring $R$, $Bbb{AG}_*(_RM)$ isconnected and diam$Bbb{AG}_*(_RM)leq 3$. Moreover, if $Bbb{AG}_*(_RM)$ contains a cycle, then $mbox{gr}Bbb{AG}_*(_RM)leq 4$. Also for an $R$-module $M$ with$Bbb{A}_*(M)neq S(M)setminus {0}$, $...
نویسندگان همکار