X. Guo

Department of Mathematics‎, ‎Shanghai University‎, ‎Shanghai‎ ‎200444‎, ‎P‎.‎R‎. ‎China.

[ 1 ] - Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

[ 2 ] - On finite $X$-decomposable groups for $X={1‎, ‎2‎, ‎3‎, ‎4}$

Let $mathcal {N}_G$ denote the set of all proper‎ ‎normal subgroups of a group $G$ and $A$ be an element of $mathcal‎ ‎{N}_G$‎. ‎We use the notation $ncc(A)$ to denote the number of‎ ‎distinct $G$-conjugacy classes contained in $A$ and also $mathcal‎ ‎{K}_G$ for the set ${ncc(A) | Ain mathcal {N}_G}$‎. ‎Let $X$ be‎ ‎a non-empty set of positive integers‎. ‎A group $G$ is said to be‎ ‎$X$-d...

نویسندگان همکار

J. Wang 1  

R. Chen 1