M. Ghaznavi
Faculty of Mathematics, Shahrood University of Technology, Shahrood, Iran
[ 1 ] - An algorithm for approximating nondominated points of convex multiobjective optimization problems
In this paper, we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP), where the constraints and the objective functions are convex. We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points. The proposed algorithm can be appl...
[ 2 ] - A novel technique for a class of singular boundary value problems
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...
[ 3 ] - الگوریتمی جدید برای پیدا کردن نقاط بهینه پارتو در مسائل بهینهسازی چندهدفه
در این مقاله یک روش اسکالرسازی اصلاحشده برای بدست آوردن مجموعه نقاط پارتو در مسائل بهینهسازی چندهدفه مورد بررسی قرار میگیرد. روش پیشنهادی، تعمیمی از روشهای تقاطع مرزی نرمال محدودشده و روش پاسکلوتی-سرافینی میباشد. در ابتدا، مساله بهینهسازی مربوط به روش اصلاحشده را بررسی میکنیم و سپس الگوریتمی برای بدست آوردن مجموعه نقاط بهینه پارتو ارایه میدهیم. در ادامه، روابط بین جوابهای بهینه مساله ...
[ 4 ] - A New Algorithm for Constructing the Pareto Front of Bi-objective Optimization Problems
Here, scalarization techniques for multi-objective optimization problems are addressed. A new scalarization approach, called unified Pascoletti-Serafini approach, is utilized and a new algorithm to construct the Pareto front of a given bi-objective optimization problem is formulated. It is shown that we can restrict the parameters of the scalarized problem. The computed efficient points provide...
نویسندگان همکار