M. Namjoo
Department of Mathematics, School of Mathematical Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
[ 1 ] - A numerical method for discrete fractional--order chemostat model derived from nonstandard numerical scheme
In this paper, the fractional--order form of three dimensional chemostat model with variable yields is introduced. The stability analysis of this fractional system is discussed in detail. In order to study the dynamic behaviours of the mentioned fractional system, the well known nonstandard (NSFD) scheme is implemented. The proposed NSFD scheme is compared with the forward Euler and ...
[ 2 ] - A nonstandard finite difference scheme for solving fractional-order model of HIV-1 infection of CD4^{+} t-cells
In this paper, we introduce fractional-order into a model of HIV-1 infection of CD4^+ T--cells. We study the effect of the changing the average number of viral particles $N$ with different sets of initial conditions on the dynamics of the presented model. The nonstandard finite difference (NSFD) scheme is implemented to study the dynamic behaviors in the fractional--order HIV-1 ...
[ 3 ] - A High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations
In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...
[ 4 ] - Approximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
[ 5 ] - روش سطح تراز برای حرکت توسط خمیدگی میانگین
مدلسازی یک رستهی گسترده از پدیدههای فیزیکی، مثل رشد کریستال و انتشار شعله، منجر به ردیابی جهتهایی میشود که با سرعت وابسته به خمیدگی حرکت میکند. وقتی که سرعت خمیدگی است، منجر به یکی از معادلات دیفرانسیل مرتبه دوم غیر خطی تبهگون کلاسیک در فضای اقلیدسی میشود. سوالی که به صورت طبیعی مطرح میشود، چگونگی منظم بودن جوابها است. جوابهای تئوریک تنها در مفهوم ضعیف تعریف میشوند، اما منجر به این ...
نویسندگان همکار