H.F. Ramírez-Ospina
Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá DC, Colombia.
[ 1 ] - Hyperbolic surfaces of $L_1$-2-type
In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.
نویسندگان همکار
P. Lucas 1