Ramin Kazemi

Imam Khomeini International University

[ 1 ] - CONDITIONAL EXPECTATION IN THE KOPKA'S D-POSETS

The notion of a $D$-poset was introduced in a connection withquantum mechanical models. In this paper, we introduce theconditional expectation of  random variables on theK^{o}pka's $D$-Poset and prove the basic properties ofconditional expectation on this  structure.

[ 2 ] - The ratio and product of the multiplicative Zagreb‎ ‎indices

‎The first multiplicative Zagreb index $Pi_1(G)$ is equal to the‎ ‎product of squares of the degree of the vertices and the second‎ ‎multiplicative Zagreb index $Pi_2(G)$ is equal to the product of‎ ‎the products of the degree of pairs of adjacent vertices of the‎ ‎underlying molecular graphs $G$‎. ‎Also‎, ‎the multiplicative sum Zagreb index $Pi_3(G)$ is equal to the product of‎ ‎the sum...

[ 3 ] - On the first variable Zagreb index

‎The first variable Zagreb index of graph $G$ is defined as‎ ‎begin{eqnarray*}‎ ‎M_{1,lambda}(G)=sum_{vin V(G)}d(v)^{2lambda}‎, ‎end{eqnarray*}‎ ‎where $lambda$ is a real number and $d(v)$ is the degree of‎ ‎vertex $v$‎. ‎In this paper‎, ‎some upper and lower bounds for the distribution function and expected value of this index in random increasing trees (rec...

[ 4 ] - On the Multiplicative Zagreb Indices of Bucket Recursive‎ ‎Trees

‎Bucket recursive trees are an interesting and natural‎ ‎generalization of ordinary recursive trees and have a connection‎ to mathematical chemistry‎. ‎In this paper‎, ‎we give the lower and upper bounds for the moment generating‎ ‎function and moments of the multiplicative Zagreb indices in a‎ ‎randomly chosen bucket recursive tree of size $n$ with maximal bucket size $bgeq1$‎. Also, ‎we consi...

[ 5 ] - The eccentric connectivity index of bucket recursive trees

If $G$ is a connected graph with vertex set $V$, then the eccentric connectivity index of $G$, $xi^c(G)$, is defined as $sum_{vin V(G)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. In this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.

[ 6 ] - The Order Steps of an Analytic Combinatorics

‎Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures‎. ‎This theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines‎, ‎including probability theory‎, ‎statistical physics‎, ‎computational biology and information theory‎. ‎With a caref...

نویسندگان همکار