Saeid Alikhani

Department Mathematics, Yazd University 89195-741, Yazd, Iran

[ 1 ] - The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

[ 2 ] - INDEPENDENT SETS OF SOME GRAPHS ASSOCIATED TO COMMUTATIVE RINGS

Let $G=(V,E)$ be a simple graph. A set $Ssubseteq V$ isindependent set of $G$,  if no two vertices of $S$ are adjacent.The  independence number $alpha(G)$ is the size of a maximumindependent set in the graph. In this paper we study and characterize the independent sets ofthe zero-divisor graph $Gamma(R)$ and ideal-based zero-divisor graph $Gamma_I(R)$of a commutative ring $R$.

[ 3 ] - Distinguishing number and distinguishing index of natural and fractional powers of graphs

‎The distinguishing number (resp. index) $D(G)$ ($D'(G)$) of a graph $G$ is the least integer $d$‎ ‎such that $G$ has an vertex labeling (resp. edge labeling) with $d$ labels that is preserved only by a trivial‎ ‎automorphism‎. ‎For any $n in mathbb{N}$‎, ‎the $n$-subdivision of $G$ is a simple graph $G^{frac{1}{n}}$ which is constructed by replacing each edge of $G$ with a path of length $n$...

[ 4 ] - Anti-forcing number of some specific graphs

Let $G=(V,E)$ be a simple connected graph. A perfect matching (or Kekul'e structure in chemical literature) of $G$ is a set of disjoint edges which covers all vertices of $G$. The anti-forcing number of $G$ is the smallest number of edges such that the remaining graph obtained by deleting these edges has a unique perfect matching and is denoted by $af(G)$. In this paper we consider some specifi...

[ 5 ] - TOTAL DOMINATION POLYNOMIAL OF GRAPHS FROM PRIMARY SUBGRAPHS

Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...

[ 6 ] - ON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS

Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...

[ 7 ] - حدس های زیبا در نظریه گراف

به طور قطع، هر آنچه که در ریاضیات مطرح می‌شود الزاماً زیبا نیست. اما با باور به این‏‌که زیبایی در بطن بهترین‌ قسمت‌های ریاضی قرار دارد، تلاش می‌کنیم تا برخی از بهترین حدس‌های مربوط به نظریه‌ی گراف را گردآوری کنیم که با ملاک‌های مختلف زیبایی جور در بیایند.

[ 8 ] - در مورد حدس روتا

مترویدها‎ در تلاش برای فراهم آوردن یک رفتار مجرد یکسان از وابستگی در جبر خطی و نظریه گراف معرفی شده‌اند. نام متروید ساختاری مربوط به یک ماتریس را القا می‌کند. تعریف ویتنی‎‎ تنوعی شگفت‌انگیز از ساختارهای ترکیبیاتی را در برداشت. از این گذشته مترویدها به طور طبیعی در بهینه‌سازی ترکیبیاتی پدیدار می‌شوند، زیرا آنها دقیقا‏ً همان ساختارهای ترکیبیاتی هستند که الگوریتم حریصانه برای آن به نتیجه می‌رسد. یک...

[ 9 ] - فراکتال راوزی چیست؟

بنا به یک سنت قدیمی که به دوره ی هادامارد و مورس برمی گردد واژه های نمادین و نامتناهی را به سیستم هایدینامیکی که از هندسه یا مکانیک می آیند، نسبت می دهند. برعکس ممکن است بخواهیم برای واژه های نامتناهیتولید شده توسط یک روش جبری یا ترکیبیاتی نمایش های هندسی ارائه دهیم. مثال های مقدماتی مانند واژه یفیبوناتچی، سیستم های دینامیکی مشهوری را به ما می دهند، اما تعمیم طبیعی این مطلب ما را به خانواده ای ...

[ 10 ] - Some Families of Graphs whose Domination Polynomials are Unimodal

Let $G$ be a simple graph of order $n$. The domination polynomial of $G$ is the polynomial $D(G, x)=sum_{i=gamma(G)}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$ and $gamma(G)$ is the domination number of $G$. In this paper we present some families of graphs whose domination polynomials are unimodal.

[ 11 ] - Chromaticity of Turan Graphs with At Most Three Edges Deleted

Let $P(G,lambda)$ be the chromatic polynomial of a graph $G$. A graph $G$ ischromatically unique if for any graph $H$, $P(H, lambda) = P(G,lambda)$ implies $H$ is isomorphic to $G$. In this paper, we determine the chromaticity of all Tur'{a}n graphs with at most three edges deleted. As a by product, we found many families of chromatically unique graphs and chromatic equivalence classes of graph...

[ 12 ] - On the saturation number of graphs

Let $G=(V,E)$ be a simple connected graph. A matching $M$ in a graph $G$ is a collection of edges of $G$ such that no two edges from $M$ share a vertex. A matching $M$ is maximal if it cannot be extended to a larger matching in $G$. The cardinality of any smallest maximal matching in $G$ is the saturation number of $G$ and is denoted by $s(G)$. In this paper we study the saturation numbe...

[ 14 ] - A GRAPH WHICH RECOGNIZES IDEMPOTENTS OF A COMMUTATIVE RING

In this paper we introduce and study a graph on the set of ideals of a commutative ring $R$. The vertices of this graph are non-trivial ideals of $R$ and two distinct ideals $I$ and $J$ are adjacent if and only $IJ=Icap J$. We obtain some properties of this graph and study its relation to the structure of $R$.

نویسندگان همکار