Mohammad Reza Oboudi
Department of Mathematics, College of Sciences, Shiraz University, Shiraz, 71457-44776, Iran
[ 1 ] - Small graphs with exactly two non-negative eigenvalues
Let $G$ be a graph with eigenvalues $lambda_1(G)geqcdotsgeqlambda_n(G)$. In this paper we find all simple graphs $G$ such that $G$ has at most twelve vertices and $G$ has exactly two non-negative eigenvalues. In other words we find all graphs $G$ on $n$ vertices such that $nleq12$ and $lambda_1(G)geq0$, $lambda_2(G)geq0$ and $lambda_3(G)0$, $lambda_2(G)>0$ and $lambda_3(G)
نویسندگان همکار