حمید مظاهری تهرانی
دانشگاه یزد
[ 1 ] - w_0-Nearest Points and w_0-Farthest Point in Normed Linear Spaces
w0-Nearest Points and w0-Farthest Point in Normed Linear Spaces
[ 2 ] - Some results on convergence and existence of best proximity points
In this paper, we introduce generalized cyclic φ-contraction maps in metric spaces and give some results of best proximity points of such mappings in the setting of a uniformly convex Banach space. Moreover, we obtain convergence and existence results of proximity points of the mappings on reflexive Banach spaces
[ 3 ] - Remotality and proximinality in normed linear spaces
In this paper, we consider the concepts farthest points and nearest points in normed linear spaces, We obtain a necessary and coecient conditions for proximinal, Chebyshev, remotal and uniquely remotal subsets in normed linear spaces. Also, we consider -remotality, -proximinality, coproximinality and co-remotality.
[ 4 ] - SOME NEW RESULTS ON REMOTEST POINTS IN NORMED SPACES
In this paper, using the best proximity theorems for an extensionof Brosowski's theorem. We obtain other results on farthest points. Finally, wedene the concept of e- farthest points. We shall prove interesting relationshipbetween the -best approximation and the e-farthest points in normed linearspaces (X; ||.||). If z in W is a e-farthest point from an x in X, then z is also a-best approximati...
[ 5 ] - On co-Farthest Points in Normed Linear Spaces
In this paper, we consider the concepts co-farthest points innormed linear spaces. At first, we define farthest points, farthest orthogonalityin normed linear spaces. Then we define co-farthest points, co-remotal sets,co-uniquely sets and co-farthest maps. We shall prove some theorems aboutco-farthest points, co-remotal sets. We obtain a necessary and coecient conditions...
[ 6 ] - نزدیکترین دوتایی در مشبکههای کامل ددکیند
در این مقاله به بررسی مسئله نزدیکترین دوتایی میپردازیم. این مسئله پیش از این در فضاهای متری مطرح گردیده و مطالعه شده است و در این مقاله به بررسی آن در فضاهای مشبکه پرداخته میشود و از منظر ترتیبی مورد بررسی قرار می دهیم. این مسئله در فضای مشبکه های کامل ددکیند مورد بحث قرار میگیرد.
[ 7 ] - REMOTAL CENTERS AND CHEBYSHEV CENITERS IN NORMED SPACES
In this paper, we consider Nearest points" and Farthestpoints" in normed linear spaces. For normed space (X; ∥:∥), the set W subset X,we dene Pg; Fg;Rg where g 2 W. We obtion results about on Pg; Fg;Rg. Wend new results on Chebyshev centers in normed spaces. In nally we deneremotal center in normed spaces.
[ 8 ] - On Best Proximity Points in metric and Banach spaces
Notice that best proximity point results have been studied to find necessaryconditions such that the minimization problemminx∈A∪Bd(x,Tx)has at least one solution, where T is a cyclic mapping defined on A∪B.A point p ∈ A∪B is a best proximity point for T if and only if thatis a solution of the minimization problem (2.1). Let (A,B) be a nonemptypair in a normed...
[ 9 ] - Best Proximity Points Results for Cone Generalized Semi-Cyclic φ-Contraction Maps
In this paper, we introduce a cone generalized semi-cyclicφ−contraction maps and prove best proximity points theorems for such mapsin cone metric spaces. Also, we study existence and convergence results ofbest proximity points of such maps in normal cone metric spaces. Our resultsgeneralize some results on the topic.
نویسندگان همکار