محمدتقی صادقی

دانشگاه یزد - دانشکده مهندسی برق

[ 1 ] - بهینه‌سازی وزن‌ها در کرنل مرکب برای طبقه‌بند مبتنی بر نمایش تنک کرنلی

طبقه‌بند مبتنی بر نمایش تنک (SRC)یکی از الگوریتم‌های موفق در ترکیب مفاهیم مطرح در دو حوزه نمونه‌برداری فشرده و آموزش ماشین است. در SRC، هر نمونه بر اساس ترکیب خطی تنکی از نمونه‌های آموزشی نمایش داده می‌شود. با توجه به موفقیت‌های اولیه این الگوریتم، فرم کرنلیزه آن (KSRC) نیز ارائه شده که در آن داده‌ها با استفاده از تابع کرنل به طور غیر صریح به فضای ویژگی جدیدی با ابعاد بالاتر نگاشت یافته و سپسSR...

[ 2 ] - آشکارسازی مولفة P300 سیگنال مغزی با استفاده از الگوی زمانی مشترک وزن‌دار

آشکارسازی پتانسیل‌های وابسته به رخداد، یک پیش‌نیاز مهم در سیستم‌های واسط مغز و کامپیوتر (BCI) مبتنی بر ERP است. برای افزایش درصد صحت طبقه‌بندی در این سیستم‌ها، از روش‌های فیلتر‌ینگ مختلفی استفاده می‌شود تا نرخ سیگنال به نویز بهبود یابد و در نتیجه تشخیص و طبقه‌بندی پتانسیل‌های وابسته به رخداد آسان شود. پیش از این، عملکرد فیلترهای الگوی مکانی مشترک (CSP) و الگوی زمانی مشترک (CTP) که به‌ترتیب فیلت...

[ 3 ] - طبقه‌بندی کننده دومرحله‌ای مبتنی بر نمایش تنک و کاربرد آن در تشخیص سرطان

ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻧﺘﺎﻳﺞ ﻣﻮﻓﻘﻴﺖﺁﻣﻴﺰ ﻃﺒﻘﻪﺑﻨﺪیﻛﻨﻨﺪﻩ ﻣﺒﺘﻨﻰ ﺑﺮ ﻧﻤﺎﻳﺶ ﺗﻨﮏ (SRC) ﻭ ﺧﻮﺷﻪﺑﻨﺪی ﺯﻳﺮﻓﻀﺎی ﺗﻨﮏ (SSC) ﺩﺭ ﻛﺎﺭﺑﺮﺩﻫﺎی ﻣﺨﺘﻠﻒ، ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺑﺎ ﺗﺮﻛﻴﺐ ﺍﻳﻦ ﺩﻭ ﺭﻭﺵ، ﻳﮏ ﺭﻭﺵ ﻃﺒﻘﻪﺑﻨﺪی ﺳﻠﺴﻠﻪ ﻣﺮﺍﺗﺒﻰ ﺍﺭﺍﺋﻪ ﻣﻰﺷﻮﺩ. ﺍﻳﺪﻩ ﺍﺻﻠﻰ ﺩﺭ ﺭﻭﺵﻫﺎی ﻃﺒﻘﻪﺑﻨﺪی ﻭ ﺧﻮﺷﻪﺑﻨﺪی ﻣﺒﺘﻨﻰ ﺑﺮ ﻧﻤﺎﻳﺶ ﺗﻨﮏ، ﻧﻤﺎﻳﺶ ﻫﺮ ﺩﺍﺩﻩ ﺑﻪ ﺻﻮﺭﺕ ﺗﺮﻛﻴﺐ ﺧﻄﻰ ﺗﻨﮏ ﺍﺯ ﺳﺎﻳﺮ ﺩﺍﺩﻩﻫﺎ ﺍﺳﺖ ﺑﻪ ﮔﻮﻧﻪﺍی ﻛﻪ ﺩﺍﺩﻩﻫﺎی ﻣﺸﺎﺑﻪ ﺑﺎ ﺩﺍﺩﻩ ﻣﻮﺭﺩ ﻧﻈﺮ ﺩﺭ ﺍﻳﻦ ﺗﺮﻛﻴﺐ ﺧﻄﻰ ﺑﻴﺸﺘﺮﻳﻦ ﻭﺯﻥ ﺭﺍ ﺑﻪ ﺧﻮﺩ ﺍﺧﺘﺼﺎﺹ ...

[ 4 ] - ترکیب ویژگی‌های مختلف سیگنال EEG تک‌کاناله به‌منظور طراحی یک سیستم تأیید هویت

با ظهور دانش بیومتریک، روش‌های متداول تأیید هویت در سیستم‌های بیومتریک دچار دگرگونی شده‌اند و در حال جایگزینی با روش‌هایی بر پایة علایم حیاتی هستند. اخیراً کاربرد سیگنال الکتریکی مغز(EEG) در سیستم‌های بیومتریک به عنوان یک شاخه پژوهشی جذاب و کاربردی مورد توجه محققان قرار گرفته است. پژوهش‌های نسبتاً محدودی در زمینة بیومتریک سیگنال الکتری...

[ 5 ] - بهبود آشکارسازی مؤلفة P300 با استفاده از تلفیق روش‌های مختلف زمانی، فرکانسی و مکانیِ استخراج ویژگی

دراین مقاله سیستمی مبتنی بر بازشناسی آماری الگو جهت تفکیک سیگنال‌های حاوی P300 و فاقد آن، ارائه می‌شود. این سیستم- که بر روی دادگان P300-Speller مسابقات BCI 2005 کار می‌کند- از چهار بخش اصلی پیش‌پردازش، استخراج ویژگی، انتخاب ویژگی و طبقه‍بند تشکیل شده که تأکید اصلی این مقاله بر بخش استخراج ویژگی و بررسی کارایی ویژگی‌های مختلف است. در مرحلة استخراج ویژگی، شش دسته ویژگی شامل قطعه‌بندی هوشمند، ضرا...

[ 6 ] - Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

[ 7 ] - یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیک‌های یادگیری معیار فاصله

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

[ 8 ] - بهبود کارایی طبقه‌بندی‌کننده مبتنی بر نمایش تنک برای طبقه‌بندی سیگنالهای مغزی

In this paper, the problem of classification of motor imagery EEG signals using a sparse representation-based classifier is considered. Designing a powerful dictionary matrix, i.e. extracting proper features, is an important issue in such a classifier. Due to its high performance, the Common Spatial Patterns (CSP) algorithm is widely used for this purpose in the BCI systems. The main disadvanta...