J. Kazemitabar
Department of Electrical and Computer Engineering, Babol Noushirvani University of Technology, Babol, Iran.
[ 1 ] - Behavior-Based Online Anomaly Detection for a Nationwide Short Message Service
As fraudsters understand the time window and act fast, real-time fraud management systems becomes necessary in Telecommunication Industry. In this work, by analyzing traces collected from a nationwide cellular network over a period of a month, an online behavior-based anomaly detection system is provided. Over time, users' interactions with the network provides a vast amount of usage data. Thes...
[ 2 ] - Stock Market Fraud Detection, A Probabilistic Approach
In order to have a fair market condition, it is crucial that regulators continuously monitor the stock market for possible fraud and market manipulation. There are many types of fraudulent activities defined in this context. In our paper we will be focusing on "front running". According to Association of Certified Fraud Examiners, front running is a form of insider information and thus is very ...
[ 3 ] - Fast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies
Collecting insurance fraud samples is costly and if performed manually is very time consuming. This issue suggests usage of unsupervised models. One of the accurate methods in this regards is Spectral Ranking of Anomalies (SRA) that is shown to work better than other methods for auto insurance fraud detection specifically. However, this approach is not scalable to large samples and is not appro...
[ 4 ] - A Bayesian approach for image denoising in MRI
Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...
[ 5 ] - Detecting Suspicious Card Transactions in unlabeled data of bank Using Outlier Detection Techniqes
With the advancement of technology, the use of ATM and credit cards are increased. Cyber fraud and theft are the kinds of threat which result in using these Technologies. It is therefore inevitable to use fraud detection algorithms to prevent fraudulent use of bank cards. Credit card fraud can be thought of as a form of identity theft that consists of an unauthorized access to another person's ...
نویسندگان همکار