S. Asgari
Materials Engineering, Sharif University of Technology
[ 1 ] - Theoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery
Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...
[ 2 ] - Electrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery
Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...
[ 3 ] - Abnormal Plastic Behavior of Fine Grain Mp35n Alloy During Room Temperature Tensile Testing
In this paper, results of an investigation on the strain hardening responses of superalloy MP35N with two average grain sizes of 38 and 1 μm, during room temperature tensile testing are reported. The microstructural evolution of the deformed samples was studied using optical and transmission electron microscopy (TEM) techniques. The strain hardening behavior of the 38 μm material was rather sim...
نویسندگان همکار