A. Tehranian
[ 1 ] - Local Cohomology with Respect to a Cohomologically Complete Intersection Pair of Ideals
Let $(R,fm,k)$ be a local Gorenstein ring of dimension $n$. Let $H_{I,J}^i(R)$ be the local cohomology with respect to a pair of ideals $I,J$ and $c$ be the $inf{i|H_{I,J}^i(R)neq0}$. A pair of ideals $I, J$ is called cohomologically complete intersection if $H_{I,J}^i(R)=0$ for all $ineq c$. It is shown that, when $H_{I,J}^i(R)=0$ for all $ineq c$, (i) a minimal injective resolution of $H_{I,...
[ 2 ] - Intersection graphs associated with semigroup acts
The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...
[ 3 ] - Linear Resolutions of Powers of Generalized Mixed Product Ideals
Let L be the generalized mixed product ideal induced by a monomial ideal I. In this paper we compute powers of the genearlized mixed product ideals and show that Lk have a linear resolution if and only if Ik have a linear resolution for all k. We also introduce the generalized mixed polymatroidal ideals and prove that powers and monomial localizations of a generalized mixed polymatroidal ideal...
[ 4 ] - Incidence dominating numbers of graphs
In this paper, the concept of incidence domination number of graphs is introduced and the incidence dominating set and the incidence domination number of some particular graphs such as paths, cycles, wheels, complete graphs and stars are studied.
نویسندگان همکار