M. Sadeghi
[ 1 ] - Modeling and dose calculations of a pure beta emitting 32P coated stent for intracoronary brachytherapy by Monte Carlo code
Background: Recently, different investigators have studied the possibility of radiation therapy in restenosis prevention and have shown promising results. In this study a unique radioactive source for intra vascular brachytherapy (IVBT) was investigated. The two-dimensional dose distribution in water for a 32P IVBT stent has been calculated. The pure beta emitter source 32P has been co...
[ 2 ] - TG-60 dosimetry parameters calculation for the β-emitter 153Sm brachytherapy source using MCNP
Background: The formalism recommended by Task Group 60 (TG-60) of the American Association of Physicists in Medicine (AAPM) is applicable for β sources. Radioactive biocompatible and biodegradable 153Sm glass seed without encapsulation is a β- emitter with a short half life and delivers a high dose rate to the tumor in the millimeter range. In this work the dosimetry parameters of the ...
[ 3 ] - Targetry for cyclotron production of no-carrier-added cadmium-109 from natAg(p,n)109Cd reaction
Background: Solid targets that consist of powder and electrodeposited targets are used commonly to produce radionuclides by accelerators. Since silver is easily electrodeposited in cyanide baths and has a very excellent thermal conductivity, the electrodeposited target is preferable to produce 109Cd. To avoid cracking or peeling of the target during bombardment, it should have a level surface a...
[ 4 ] - Computer simulation techniques to design Xenon-124 solid target for iodine-123 production
Background: Iodine-123 (123I) is regarded as one of the best radionuclides for in vivo medical studies using single-photon emission computed tomography (SPECT) due to its suitable physical property. Materials and Methods: To design a new system in order to replace cryogenically solidified xenon target by the gas one, some necessary calculations are needed to be done such as finding the excitati...
نویسندگان همکار
T. Kakavand 10