zahra Danesh Kaftroudi
Department of Engineering sciences, Faculty of Technology and Engineering East of Guilan
[ 1 ] - The Electron Stopper Layer Effect on Long-Wavelength VCSEL with AsSb-Based DBR Temperature Distribution
In this study, we have theoretically investigated the effect of electron stopper layer on internal temperature distribution of high performance vertical cavity surface-emitting laser emitting at 1305 nm. Simulation software PICS3D, which self-consistently combines the 3D simulation of carrier transport, self-heating, gain computation and wave-guiding, was used. Simulation results show that chan...
[ 2 ] - Improving the Thermal Characteristics of Semiconductor Lasers Using a New Asymmetric Waveguide Structure
Self-heating leads to a temperature rise of the laser diode and limits the output power and efficiency due to increased loss and decreased differential gain. To control device self-heating, it is required to design the laser structure with a low optical loss, while the heat flux must spread out of the device efficiently. In this study, a new asymmetric waveguide design is proposed and th...
[ 3 ] - Improving Blue InGaN Laser Diodes Performance with Waveguide Structure Engineering
To enhance lasers’ power and improve their performance, a model wasapplied for the waveguide design of 400 nm InGaN/InGaN semiconductor laser, whichis much easier to implement. The conventional and new laser structures weretheoretically investigated using simulation software PICS3D, which self-consistentlycombines 3D simulation of carrier transport, self-heating, and opt...
[ 4 ] - Self-Consistent Analysis of Barrier Characterization Effects on Quantum Well Laser Internal Performance
In this paper, a numerical study of barrier characterization effects on the high-temperature internal performance of an InGaAsP multi-quantum well laser is presented. The softwareused for this purpose self-consistently combines the three-dimensional simulation of carrier transports, self-heating, and optical waveguiding. The laser model calculates all relevant physical mechanisms, including the...
[ 5 ] - Design of a new asymmetric waveguide in InP-Based multi-quantum well laser
Today, electron leakage in InP-based separate confinement laser diode has a serious effect on device performance. Control of electron leakage current is the aim of many studies in semiconductor laser industry. In this study, for the first time, a new asymmetric waveguide structure with n-interlayer for a 1.325 μm InP-based laser diode with InGaAsP multi-quantum well is proposed and theoreticall...
نویسندگان همکار