B. Mashadi
IUST
[ 1 ] - DYNAMICAL ANALYSIS AND DESIGN OF FRONT ENGINE ACCESSORY DRIVE SYSTEM
In this paper, Front Engine Accessory Drive (FEAD) system of automotive engine is modeled with ADAMS software. The model is validated using engine test data. It is then used to investigate the effect of design parameters on the system performance such as belt vibration and loads on the idlers. Three alternative layouts were developed in order to improve the performance of original EEAD system. ...
[ 2 ] - Powertrain mounting system optimization to improve vibration behavior for EF7 engine
Improvement and optimization of the Powertrain mounting system are one of the ways to improve the performance NVH cars. The study aims to find the optimal stiffness coefficients for each mount in three directions. The natural frequencies of the system remain steady and stay away from the excitation frequencies, so that the system does not a resonance. It was also, using the decoupling vibration...
[ 3 ] - A steam Rankine cycle with two-stage pumping to enhance the waste heat recovery from internal combustion engines
In this research, a high-temperature Rankin cycle (HTRC) with two-stage pumping is presented and investigated. In this cycle, two different pressures and mass flow rates in the HTRC result in two advantages. First, the possibility of direct recovery from the engine block by working fluid of water, which is a low quality waste heat source, is created in a HTRC. Secondly, by doing this, the mean ...
[ 4 ] - Increasing waste heat recovery from an internal combustion engine by a dual-loop non-organic Rankine Cycle
This research proposes the combination of a dual-loop non-organic Rankine cycle (DNORC) with an internal combustion engine to increase the output power of the recovery system by focusing on the increase in the energy input and system efficiency. In doing so, it investigates the strategy of increasing the mean effective temperature of heat addition in the high-temperature Rankine cycle (HTRC) (t...
نویسندگان همکار