Lutz Volkmann
RWTH Aachen University
[ 1 ] - Lower bounds on the signed (total) $k$-domination number
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
[ 2 ] - Double Roman domination and domatic numbers of graphs
A double Roman dominating function on a graph $G$ with vertex set $V(G)$ is defined in cite{bhh} as a function$f:V(G)rightarrow{0,1,2,3}$ having the property that if $f(v)=0$, then the vertex $v$ must have at least twoneighbors assigned 2 under $f$ or one neighbor $w$ with $f(w)=3$, and if $f(v)=1$, then the vertex $v$ must haveat least one neighbor $u$ with $f(u)ge 2$. The weight of a double R...
[ 3 ] - Sufficient conditions for maximally edge-connected and super-edge-connected
Let $G$ be a connected graph with minimum degree $delta$ and edge-connectivity $lambda$. A graph ismaximally edge-connected if $lambda=delta$, and it is super-edge-connected if every minimum edge-cut istrivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree.In this paper, we show that a connected graph or a connected triangle-free graph is maximall...
[ 4 ] - Signed total Roman k-domination in directed graphs
Let $D$ be a finite and simple digraph with vertex set $V(D)$.A signed total Roman $k$-dominating function (STR$k$DF) on$D$ is a function $f:V(D)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N^{-}(v)}f(x)ge k$ for each$vin V(D)$, where $N^{-}(v)$ consists of all vertices of $D$ fromwhich arcs go into $v$, and (ii) every vertex $u$ for which$f(u)=-1$ has a...
[ 5 ] - Sufficient conditions on the zeroth-order general Randic index for maximally edge-connected digraphs
Let D be a digraph with vertex set V(D) .For vertex v V(D), the degree of v, denoted by d(v), is defined as the minimum value if its out-degree and its in-degree . Now let D be a digraph with minimum degree and edge-connectivity If is real number, then the zeroth-order general Randic index is defined by . A digraph is maximally edge-connected if . In this paper we present sufficient condi...
[ 6 ] - The Italian domatic number of a digraph
An {em Italian dominating function} on a digraph $D$ with vertex set $V(D)$ is defined as a function$fcolon V(D)to {0, 1, 2}$ such that every vertex $vin V(D)$ with $f(v)=0$ has at least two in-neighborsassigned 1 under $f$ or one in-neighbor $w$ with $f(w)=2$. A set ${f_1,f_2,ldots,f_d}$ of distinctItalian dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vi...
[ 7 ] - A note on the Roman domatic number of a digraph
Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....
[ 8 ] - Total double Roman domination in graphs
Let $G$ be a simple graph with vertex set $V$. A double Roman dominating function (DRDF) on $G$ is a function $f:Vrightarrow{0,1,2,3}$ satisfying that if $f(v)=0$, then the vertex $v$ must be adjacent to at least two vertices assigned $2$ or one vertex assigned $3$ under $f$, whereas if $f(v)=1$, then the vertex $v$ must be adjacent to at least one vertex assigned $2$ or $3$. The weight of a DR...
[ 9 ] - Weak signed Roman domination in graphs
A {em weak signed Roman dominating function} (WSRDF) of a graph $G$ with vertex set $V(G)$ is defined as afunction $f:V(G)rightarrow{-1,1,2}$ having the property that $sum_{xin N[v]}f(x)ge 1$ for each $vin V(G)$, where $N[v]$ is theclosed neighborhood of $v$. The weight of a WSRDF is the sum of its function values over all vertices.The weak signed Roman domination number of $G...
[ 10 ] - Nonnegative signed total Roman domination in graphs
Let $G$ be a finite and simple graph with vertex set $V(G)$. A nonnegative signed total Roman dominating function (NNSTRDF) on a graph $G$ is a function $f:V(G)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N(v)}f(x)ge 0$ for each $vin V(G)$, where $N(v)$ is the open neighborhood of $v$, and (ii) every vertex $u$ for which $f(u...
[ 11 ] - Weak signed Roman k-domination in graphs
Let $kge 1$ be an integer, and let $G$ be a finite and simple graph with vertex set $V(G)$.A weak signed Roman $k$-dominating function (WSRkDF) on a graph $G$ is a function$f:V(G)rightarrow{-1,1,2}$ satisfying the conditions that $sum_{xin N[v]}f(x)ge k$ for eachvertex $vin V(G)$, where $N[v]$ is the closed neighborhood of $v$. The weight of a WSRkDF $f$ is$w(f)=sum_{vin V(G)}f(v)$. The weak si...
[ 12 ] - Bounds on the outer-independent double Italian domination number
An outer-independent double Italian dominating function (OIDIDF)on a graph $G$ with vertex set $V(G)$ is a function$f:V(G)longrightarrow {0,1,2,3}$ such that if $f(v)in{0,1}$ for a vertex $vin V(G)$ then $sum_{uin N[v]}f(u)geq3$,and the set $ {uin V(G)|f(u)=0}$ is independent. The weight ofan OIDIDF $f$ is the value $w(f)=sum_{vin V(G)}f(v)$. Theminimum weight of an OIDIDF on a graph $G$ is cal...
[ 13 ] - Signed total Italian k-domination in graphs
Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that $sum_{xin N(v)}f(x)ge k$ for each vertex v ∈ V (G), where N(v) is the neighborhood of $v$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...
نویسندگان همکار