G‎. ‎A‎. ‎HAGHIGHATDOOST

Department of Mathematics‎, ‎Azarbaijan Shahid Madani University‎, ‎Tabriz‎, ‎Iran

[ 1 ] - GROUPOID ASSOCIATED TO A SMOOTH MANIFOLD

‎In this paper‎, ‎we introduce the structure of a groupoid associated to a vector field‎ ‎on a smooth manifold‎. ‎We show that in the case of the $1$-dimensional manifolds‎, ‎our‎ ‎groupoid has a‎ ‎smooth structure such that makes it into a Lie groupoid‎. ‎Using this approach‎, ‎we associated to‎ ‎every vector field an equivalence‎ ‎relation on the Lie algebra of all vector fields on the smooth...

[ 2 ] - On the cyclic Homology of multiplier Hopf algebras

In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...

نویسندگان همکار