George Oguntala

School of Electrical Engineering, Faculty of Engineering and Informatics, University of Bradford, Bradford, West Yorkshire, UK.

[ 1 ] - Performance, Thermal Stability and Optimum Design Analyses of Rectangular Fin with Temperature-Dependent Thermal Properties and Internal Heat Generation

In this study, we analysed the thermal performance, thermal stability and optimum design analyses of a longitudinal, rectangular fin with temperature-dependent, thermal properties and internal heat generation under multi-boiling heat transfer using Haar wavelet collocation method. The effects of the key and controlling parameters on the thermal performance of the fin are investigated. The therm...

[ 2 ] - Analysis of Flow of Nanofluid through a Porous Channel with Expanding or Contracting Walls using Chebychev Spectral Collocation Method

In this work, we applied Chebychev spectral collocation method to analyze the unsteady two-dimensional flow of nanofluid in a porous channel through expanding or contracting walls with large injection or suction. The solutions are used to study the effects of various parameters on the flow of the nanofluid in the porous channel. From the analysis, It was established that increase in expansion r...

[ 3 ] - Thermal Analysis of Convective-Radiative Fin with Temperature-Dependent Thermal Conductivity Using Chebychev Spectral Collocation Method

In this paper, the Chebychev spectral collocation method is applied for the thermal analysis of convective-radiative straight fins with the temperature-dependent thermal conductivity. The developed heat transfer model was used to analyse the thermal performance, establish the optimum thermal design parameters, and also, investigate the effects of thermo-geometric parameters and thermal conducti...

[ 4 ] - Haar Wavelet Collocation Method for Thermal Analysis of Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation

In this study, the thermal performance analysis of porous fin with temperature-dependent thermal conductivity and internal heat generation is carried out using Haar wavelet collocation method. The effects of various parameters on the thermal characteristics of the porous fin are investigated. It is found that as the porosity increases, the rate of heat transfer from the fin increases and the th...

نویسندگان همکار