Mohammad Mehdi Nasrabadi

Department of Mathematics, University of Birjand, Birjand, Iran.

[ 1 ] - ON ABSOLUTE CENTRAL AUTOMORPHISMS FIXING THE CENTER ELEMENTWISE

Let G be a finite p-group and let Aut_l(G) be the group of absolute central automorphisms of G. In this paper we give necessary and sufficient condition on G such that each absolute central automorphism of G fixes the centre element-wise. Also we classify all groups of orders p^3 and p^4 whose absolute central automorphisms fix the centre element-wise.

[ 2 ] - On $m^{th}$-autocommutator subgroup of finite abelian groups

Let $G$ be a group and $Aut(G)$ be the group of automorphisms of‎ ‎$G$‎. ‎For any natural‎ number $m$‎, ‎the $m^{th}$-autocommutator subgroup of $G$ is defined‎ ‎as‎: ‎$$K_{m} (G)=langle[g,alpha_{1},ldots,alpha_{m}] |gin G‎,‎alpha_{1},ldots,alpha_{m}in Aut(G)rangle.$$‎ ‎In this paper‎, ‎we obtain the $m^{th}$-autocommutator subgroup of‎ ‎all finite abelian groups‎.

[ 3 ] - On Marginal Automorphisms of a Group Fixing the Certain Subgroup

Let W be a variety of groups defined by a set W of laws and G be a finite p-group in W. The automorphism α of a group G is said to bea marginal automorphism (with respect to W), if for all x ∈ G, x−1α(x) ∈ W∗(G), where W∗(G) is the marginal subgroup of G. Let M,N be two normalsubgroups of G. By AutM(G), we mean the subgroup of Aut(G) consistingof all automorphisms which centralize G/M. AutN(G) ...

نویسندگان همکار