M. Azari
Islamic Azad University
[ 1 ] - Splice Graphs and their Vertex-Degree-Based Invariants
Let G_1 and G_2 be simple connected graphs with disjoint vertex sets V(G_1) and V(G_2), respectively. For given vertices a_1in V(G_1) and a_2in V(G_2), a splice of G_1 and G_2 by vertices a_1 and a_2 is defined by identifying the vertices a_1 and a_2 in the union of G_1 and G_2. In this paper, we present exact formulas for computing some vertex-degree-based graph invariants of splice of graphs.
[ 2 ] - A note on vertex-edge Wiener indices of graphs
The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances D_1(u,e|G) and D_2(u,e|G) between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices W_{ve_1}(G) and W_{ve_2}(G) were introduced. In this paper, we present exact form...
[ 3 ] - Some Results on Forgotten Topological Coindex
The forgotten topological coindex (also called Lanzhou index) is defined for a simple connected graph G as the sum of the terms du2+dv2 over all non-adjacent vertex pairs uv of G, where du denotes the degree of the vertex u in G. In this paper, we present some inequalit...
[ 4 ] - On the Zagreb and Eccentricity Coindices of Graph Products
The second Zagreb coindex is a well-known graph invariant defined as the total degree product of all non-adjacent vertex pairs in a graph. The second Zagreb eccentricity coindex is defined analogously to the second Zagreb coindex by replacing the vertex degrees with the vertex eccentricities. In this paper, we present exact expressions or sharp lower bounds for the second Zagreb eccentricity co...
نویسندگان همکار