SERAJ D. KATEBI
COMPUTER SCIENCE AND ENGINEERING DEPARTMENT, COLLEGE OF ENGINEERING, SHIRAZ UNIVERSITY, SHIRAZ, IRAN
[ 1 ] - GENERATING FUZZY RULES FOR PROTEIN CLASSIFICATION
This paper considers the generation of some interpretable fuzzy rules for assigning an amino acid sequence into the appropriate protein superfamily. Since the main objective of this classifier is the interpretability of rules, we have used the distribution of amino acids in the sequences of proteins as features. These features are the occurrence probabilities of six exchange groups in the seque...
[ 2 ] - USING DISTRIBUTION OF DATA TO ENHANCE PERFORMANCE OF FUZZY CLASSIFICATION SYSTEMS
This paper considers the automatic design of fuzzy rule-basedclassification systems based on labeled data. The classification performance andinterpretability are of major importance in these systems. In this paper, weutilize the distribution of training patterns in decision subspace of each fuzzyrule to improve its initially assigned certainty grade (i.e. rule weight). Ourapproach uses a punish...
[ 3 ] - NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
نویسندگان همکار