Mahmoud Hassani
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
[ 1 ] - Local higher derivations on C*-algebras are higher derivations
Let $mathfrak{A}$ be a Banach algebra. We say that a sequence ${D_n}_{n=0}^infty$ of continuous operators form $mathfrak{A}$ into $mathfrak{A}$ is a textit{local higher derivation} if to each $ainmathfrak{A}$ there corresponds a continuous higher derivation ${d_{a,n}}_{n=0}^infty$ such that $D_n(a)=d_{a,n}(a)$ for each non-negative integer $n$. We show that if $mathfrak{A}$ is a $C^*$-algebra t...
[ 2 ] - The solutions to the operator equation $TXS^* -SX^*T^*=A$ in Hilbert $C^*$-modules
In this paper, we find explicit solution to the operator equation $TXS^* -SX^*T^*=A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $T,S$ have closed ranges and $S$ is a self adjoint operator.
[ 3 ] - A generalization of Martindale's theorem to $(alpha, beta)-$homomorphism
Martindale proved that under some conditions every multiplicative isomorphism between two rings is additive. In this paper, we extend this theorem to a larger class of mappings and conclude that every multiplicative $(alpha, beta)-$derivation is additive.
[ 4 ] - The solutions to some operator equations in Hilbert $C^*$-module
In this paper, we state some results on product of operators with closed ranges and we solve the operator equation $TXS^*-SX^*T^*= A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $TS = 1$. Furthermore, by using some block operator matrix techniques, we nd explicit solution of the operator equation $TXS^*-SX^*T^*= A$.
[ 5 ] - On the superstability of a special derivation
The aim of this paper is to show that under some mild conditions a functional equation of multiplicative $(alpha,beta)$-derivation is superstable on standard operator algebras. Furthermore, we prove that this generalized derivation can be a continuous and an inner $(alpha,beta)$-derivation.
[ 6 ] - Some improvements of numerical radius inequalities via Specht’s ratio
We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follow...
نویسندگان همکار