Razieh Farokhzad Rostami
Department of Mathematics, Faculty of Basic Sciences and Engineering, Gonbad Kavous University, Gonbad Kavous, Iran
[ 1 ] - Lie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras
Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...
[ 2 ] - Approximately generalized additive functions in several variables via fixed point method
In this paper, we obtain the general solution and the generalized Hyers-Ulam-Rassias stability in random normed spaces, in non-Archimedean spaces and also in $p$-Banach spaces and finally the stability via fixed point method for a functional equationbegin{align*}&D_f(x_{1},.., x_{m}):= sum^{m}_{k=2}(sum^{k}_{i_{1}=2}sum^{k+1}_{i_{2}=i_{1}+1}... sum^{m}_{i_{m-k+1}=i_{m-k}+1}) f(sum^{m}_{i=1, i...
نویسندگان همکار