Majid Erfanian
University of Zabol
[ 1 ] - Using Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions
Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...
[ 2 ] - Finite difference method for solving partial integro-differential equations
In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...
[ 3 ] - Topology coloring
The purpose of this study is to show how topological surfaces are painted in such a way that the colors are borderless but spaced with the lowest color number. That a surface can be painted with at least as many colors as the condition of defining a type of mapping with the condition that it has no fixed point. This mapping is called color mapping and is examined and analyzed in differe...
نویسندگان همکار