M. Matinfar

Department of Mathematics, University of Mazandaran, Babolsar, Iran

[ 1 ] - Application of Laguerre Polynomials for Solving Infinite Boundary Integro-Differential Equations

In this study‎, ‎an efficient method is presented for solving infinite boundary integro-differential equations (IBI-DE) of the second kind with degenerate kernel in terms of Laguerre polynomials‎. ‎Properties of these polynomials and operational matrix of integration are first presented‎. ‎These properties are then used to transform the integral equation to a matrix equation which corresponds t...

[ 2 ] - Analytical-Approximate Solution for Nonlinear Volterra Integro-Differential Equations

In this work, we conduct a comparative study among the combine Laplace transform and modied Adomian decomposition method (LMADM) and two traditional methods for an analytic and approximate treatment of special type of nonlinear Volterra integro-differential equations of the second kind. The nonlinear part of integro-differential is approximated by Adomian polynomials, and the equation is reduce...

[ 3 ] - Numerical solution of Fredholm integral-differential equations on unbounded domain

In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...

[ 4 ] - A new method for ranking of Z-numbers

In this paper we propose a new method for ranking Z- numbers and generalizations. This method is based on the internal structure of the artificial neural network, which suggests that the structure of this network consists of inputs weights and the transfer function linear, nonlinear and sometimes linear and nonlinear. It is shown that the proposed method while possessing the ranking properties ...

[ 5 ] - Numerical approximation based on the Bernouli polynomials for solving Volterra integro-differential equations of high order

In this ‎article‎‎, ‎an ‎ap‎plied matrix method, which is based on Bernouli Polynomials, has been presented to find approximate solutions of ‎high order ‎Volterra ‎integro-differential‎ equations. Through utilizing this approach, the proposed equations reduce to a system of algebric equations with unknown Bernouli coefficients. A number of numerical ‎illustrations‎ have been ‎solved‎ to ‎assert...

نویسندگان همکار