The optimal warehouse capacity: A queuing-based fuzzy programming approach
نویسندگان
چکیده مقاله:
Among the various existing models for the warehousing management, the simultaneous use of private and public warehouses is as the most well-known one. The purpose of this article is to develop a queuing theory-based model for determining the optimal capacity of private warehouse in order to minimize the total corresponding costs. In the proposed model, the available space and budget to create a private warehouse are limited. Due to the ambiguity, some parameters are naturally simulated by expert-based triangular fuzzy numbers and two well-known methods are applied to solve the queuing-based fuzzy programming model and optimize the private warehouse capacity. The numerical results for three cases confirm that unlike the previous approaches, the proposed one may easily and efficiently be matched with various lines of manufacturing environments and conditions.
منابع مشابه
Fractional CCP: A Fuzzy Goal Programming Approach
Abstract It is the purpose of this article to introduce a linear approximation technique for solving a fractional chance constrained programming (CC) problem. For this purpose, a fuzzy goal programming model of the equivalent deterministic form of the fractional chance constrained programming is provided and then the process of defuzzification and linearization of the problem is started. A sam...
متن کاملA goal programming approach for fuzzy flexible linear programming problems
We are concerned with solving Fuzzy Flexible Linear Programming (FFLP) problems. Even though, this model is very practical and is useful for many applications, but there are only a few methods for its situation. In most approaches proposed in the literature, the solution process needs at least, two phases where each phase needs to solve a linear programming problem. Here, we propose a method t...
متن کاملQuadratic bi-level programming problems: a fuzzy goal programming approach
This paper presents a fuzzy goal programming (FGP) methodology for solving bi-level quadratic programming (BLQP) problems. In the FGP model formulation, firstly the objectives are transformed into fuzzy goals (membership functions) by means of assigning an aspiration level to each of them, and suitable membership function is defined for each objectives, and also the membership functions for vec...
متن کاملA NEW APPROACH FOR SOLVING FULLY FUZZY QUADRATIC PROGRAMMING PROBLEMS
Quadratic programming (QP) is an optimization problem wherein one minimizes (or maximizes) a quadratic function of a finite number of decision variable subject to a finite number of linear inequality and/ or equality constraints. In this paper, a quadratic programming problem (FFQP) is considered in which all cost coefficients, constraints coefficients, and right hand side are characterized by ...
متن کاملquadratic bi-level programming problems: a fuzzy goal programming approach
this paper presents a fuzzy goal programming (fgp) methodology for solving bi-level quadratic programming (blqp) problems. in the fgp model formulation, firstly the objectives are transformed into fuzzy goals (membership functions) by means of assigning an aspiration level to each of them, and suitable membership function is defined for each objectives, and also the membership functions for vec...
متن کاملA numerical approach for optimal control model of the convex semi-infinite programming
In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 2
صفحات 1- 12
تاریخ انتشار 2015-05-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023