Study of kinetics, isotherms and thermodynamics of lead adsorption from aqueous solutions using Lignocellulose Nano-fibers (LCNFs)

نویسندگان

  • H. Rezaei Assistant Professor, Department of Environmental Pollution, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
  • H. Yousefi Associate Professor, Department of Wood and Paper Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
  • S. Rastgar Ph.D candidate, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده مقاله:

The surface adsorption of heavy metals in effluents with nanoparticles is today asuitable method for effluents treatment. In the present study, lignocellulose nano-fibers(LCNFs) were used as natural adsorbent for lead adsorption. The aim was to evaluate leadadsorption using adsorption isotherms, kinetics and thermodynamics. Fourier TransformInfrared Spectroscopy (FT-IR) and Transmission Electron Microscopy (TEM) wereemployed to determine the chemical and structural properties of this adsorbent. To studythe adsorption isotherm, two-parameter models of Langmuir, Freundlich, Temkin, andDubinin–Radushkevich were compared and three-parameter models of Redlich-Petersonand Sips and maximum correlation coefficient (R2) were selected as the best isothermmodel for lead adsorption, which was obtained for the Langmuir model at 0.9997 and theRedlich-Peterson model at 0.9338. Therefore, the data were consistent with both models butwere better described by the Langmuir model, indicating homogeneity of the adsorbentsurface. In addition, reaction kinetic models, including pseudo-zero-order, pseudo-firstorder, pseudo-second-order and pseudo-third-order as well as the diffusion kinetic modelsincluding intra-particle diffusion and Elovich were investigated for adsorption reaction. Themaximum correlation coefficient (R2=1) was related to the pseudo-second-order model;therefore, the lead adsorption by LCNFs was of a chemical type. The results obtained fromthe calculation of thermodynamic parameters such as Gibbs free energy (ΔG), enthalpy(ΔH◦), and entropy (ΔS◦) respectively showed spontaneity, exothermicity, and increasedirregularities of the reaction. This study showed that LCNF is suitable for the adsorption oflead and as such could be used as a cost-effective adsorbent in the process of industrialwastewater treatment.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

kinetics and thermodynamics of lead adsorption from aqueous solutions onto iranian sepiolite and zeolite

a good understanding of adsorption equilibrium and thermodynamics is required to design and operate an adsorption process. this study was conducted to assess the adsorption percentage of pb2+ ions as a function of contact time, solution ph and temperatures, and adsorbent dosage through a series of batch experiments. the methods including zeta potentials, specific surface area measurements and t...

متن کامل

Adsorption kinetics and thermodynamics of Malachite Green from aqueous solutions onto expanded Graphite nanosheets

Expanded graphite nanosheets (EG-nanosheets) were used for adsorption of Malachite Green (MG) from aqueous solution. The influences of dye concentrations, absorbent dosage, pH values and the temperatures on the adsorption were investigated as well. The dye adsorption experiments were carried out by utilizing batch procedure. EG-nanosheets were initially characterized by scanning electron micros...

متن کامل

Adsorption kinetics and thermodynamics of Malachite Green from aqueous solutions onto expanded Graphite nanosheets

Expanded graphite nanosheets (EG-nanosheets) were used for adsorption of Malachite Green (MG) from aqueous solution. The influences of dye concentrations, absorbent dosage, pH values and the temperatures on the adsorption were investigated as well. The dye adsorption experiments were carried out by utilizing batch procedure. EG-nanosheets were initially characterized by scanning electron micros...

متن کامل

A Study of Isotherms and Adsorption Kinetic of Di (2-Ethylhexyl) Phthalate by Nano Cellulose from Aqueous Solutions

Introduction: Di (2-ethylhexyl) phthalate is one of the most abundant phthalate esters and it is widely used as softeners in plastic products. Malformation, carcinogenicity, the poisoning of the reproductive system, and also the disruption of the human endocrine system are the harmful effects of these substances. Materials and Methods: In this research, the removal of di (2-ethylhexyl) phthal...

متن کامل

Montmorillonite Nanoparticles in Removal of Textile Dyes from Aqueous Solutions: Study of Kinetics and Thermodynamics

Dyeing wastewaters are one of the most common pollutants that cause many problems for public health and environment due to dermatitis and skin rashes, cancer production, mutagenesis, etc. Thus, treatment of these wastewaters is necessary. The purpose of this study was to investigate the efficiency of montmorillonite nanoparticles as an adsorbent in adsorption process of Reactive Ye...

متن کامل

Study on the adsorption isotherms of chromium (VI) by means of carbon nano tubes from aqueous solutions

Background: The presence of heavy metals in the environment especially in water supplies have caused many concerns because of their toxicity and non-degradability. Hexavalent Chromium (Cr) is one of the most toxic metals which is used in many industries, so it is essential to remove it from industrial wastewater. In this study, we made a comparison between different adsorption isotherms in the ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 1

صفحات  64- 82

تاریخ انتشار 2020-09-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023