Solution of fuzzy differential equations
نویسندگان
چکیده مقاله:
Hybrid system is a dynamic system that exhibits both continuous and discrete dynamic behavior. The hybrid differential equations have a wide range of applications in science and engineering. The hybrid systems are devoted to modeling, design, and validation of interactive systems of computer programs and continuous systems. Hybrid fuzzy differential equations (HFDEs) is considered by Kim et al. [11]. In the present paper it is shown that the example presented by Kim et al. in the Case I is not very accurate and in the Case II, is incorrect. Namely, the exact solution proposed by the authors in the Case II are not solutions of the given HFDE. The correct exact solution is also presented here, together with some results for characterizing solutions of FDEs under Hukuhara differentiability by an equivalent system of ODEs. Then, the homotopy analysis method (HAM) is applied to obtained the series solution of the HFDEs. Finally, we illustrate our approach by a numerical example.
منابع مشابه
Approximate Solution of Fuzzy Fractional Differential Equations
In this paper we propose a method for computing approximations of solution of fuzzy fractional differential equations using fuzzy variational iteration method. Defining a fuzzy fractional derivative, we verify the utility of the method through two illustrative examples.
متن کاملsolution of fuzzy differential equations
hybrid system is a dynamic system that exhibits both continuous and discrete dynamic behavior. the hybrid differential equations have a wide range of applications in science and engineering. the hybrid systems are devoted to modeling, design, and validation of interactive systems of computer programs and continuous systems. hybrid fuzzy differential equations (hfdes) is considered by ...
متن کاملFUZZY INTEGRO-DIFFERENTIAL EQUATIONS: DISCRETE SOLUTION AND ERROR ESTIMATION
This paper investigates existence and uniqueness results for the first order fuzzy integro-differential equations. Then numerical results and error bound based on the left rectangular quadrature rule, trapezoidal rule and a hybrid of them are obtained. Finally an example is given to illustrate the performance of the methods.
متن کاملNumerical solution of fuzzy differential equations under generalized differentiability by fuzzy neural network
In this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized characterization Theorem. Then a novel hybrid method based on learning algorithm of fuzzy neural network for the solution of differential equation with fuzzy initial value is presented. Here neural network is considered as a part of large eld called ne...
متن کاملNumerical solution of hybrid fuzzy differential equations by fuzzy neural network
The hybrid fuzzy differential equations have a wide range of applications in science and engineering. We consider the problem of nding their numerical solutions by using a novel hybrid method based on fuzzy neural network. Here neural network is considered as a part of large eld called neural computing or soft computing. The proposed algorithm is illustrated by numerical examples and the result...
متن کاملOn Existence and Uniqueness of Solution of Fuzzy Fractional Differential Equations
The purpose of this paper is to study the fuzzy fractional differentialequations. We prove that fuzzy fractional differential equation isequivalent to the fuzzy integral equation and then using this equivalenceexistence and uniqueness result is establish. Fuzzy derivative is considerin the Goetschel-Voxman sense and fractional derivative is consider in theRiemann Liouville sense. At the end, we...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 1
صفحات 73- 80
تاریخ انتشار 2016-01-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023